Зависимость полезной мощности от сопротивления внешней цепи

Зависимость полезной мощности от сопротивления внешней цепи thumbnail

ЗАКОН ОМА ДЛЯ ПОЛНОЙ ЦЕПИ:

, (1)

I- сила тока в цепи; Е- электродвижущая сила источника тока, включённого в цепь; R- сопротивление внешней цепи; r- внутреннее сопротивление источника тока.

МОЩНОСТЬ, ВЫДЕЛЯЕМАЯ ВО ВНЕШНЕЙ ЦЕПИ

. (2)

Из формулы (2) видно, что при коротком замыкании цепи (R®0) и при R®эта мощность равна нулю. При всех других конечных значениях Rмощность Р1> 0. Следовательно, функция Р1 имеет максимум. Значение R0, соответствующее максимальной мощности, можно получить, дифференцируя Р1 по R и приравнивая первую производную к нулю:

. (3)

Из формулы (3), с учётом того, что R и r всегда положительны, а Е ? 0, после несложных алгебраических преобразований получим:

R0 = r. (4)

Следовательно, мощность, выделяемая во внешней цепи, достигает наибольшего значения при сопротивлении внешней цепи равном внутреннему сопротивлению источника тока.

При этом сила тока в цепи (5)

равна половине тока короткого замыкания. При этом мощность, выделяемая во внешней цепи, достигает своего максимального значения, равного

. (6)

Когда источник замкнут на внешнее сопротивление, то ток протекает и внутри источника и при этом на внутреннем сопротивлении источника выделяется некоторое количество тепла. Мощность, затрачиваемая на выделение этого тепла равна

. (7)

Следовательно, полная мощность, выделяемая во всей цепи , определится формулой

= I2(R+r) = IE (8)

КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ

КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ источника тока равен . (9)

Из формулы (8) следует, что

, (10)

т.е. Р1 изменяется с изменением силы тока в цепи по параболическому закону и принимает нулевые значения при I = 0 и при . Первое значение соответствует разомкнутой цепи ( R>> r ), второе – короткому замыканию ( R<< r). Зависимость к.п.д. от силы тока в цепи с учётом формул (8), (9), (10) примет вид

(11)

Таким образом, к.п.д. достигает наибольшего значения h =1 в случае разомкнутой цепи ( I = 0), а затем уменьшается по линейному закону, обращаясь в нуль при коротком замыкании.

Зависимость мощностей Р1, Рполн = EI и к.п.д. источника тока от силы тока в цепи показаны на рис.1.

Статья 34 - Картинка 15

Рис.1. I0 E/r

Из графиков видно, что получить одновременно полезную мощность и к.п.д. невозможно. Когда мощность, выделяемая на внешнем участке цепи Р1, достигает наибольшего значения, к.п.д. в этот момент равен 50%.

МЕТОДИКА И ПОРЯДОК ИЗМЕРЕНИЙ

Статья 34 - Картинка 16

Рис. 2.

Соберите на экране цепь, показанную на рис. 2. Для этого сначала щелкните левой кнопкой мыши над кнопкой э.д.с. в нижней части экрана. Переместите маркер мыши на рабочую часть экрана, где расположены точки. Щелкните левой кнопкой мыши в рабочей части экрана, где будет расположен источник э.д.с.

Разместите далее последовательно с источником резистор, изображающий его внутреннее сопротивление (нажав предварительно кнопку в нижней части экрана) и амперметр (кнопка там же). Затем расположите аналогичным образом резисторы нагрузки и вольтметр , измеряющий напряжение на нагрузке.

Подключите соединительные провода. Для этого нажмите кнопку провода внизу экрана, после чего переместите маркер мыши в рабочую зону схемы. Щелкайте левой кнопкой мыши в местах рабочей зоны экрана, где должны находиться соединительные провода.

4. Установите значения параметров для каждого элемента. Для этого щелкните левой кнопкой мыши на кнопке со стрелкой . Затем щелкните на данном элементе. Подведите маркер мыши к движку появившегося регулятора, нажмите на левую кнопку мыши и, удерживая ее в нажатом состоянии, меняйте величину параметра и установите числовое значение, обозначенное в таблице 1 для вашего варианта.

Таблица 1. Исходные параметры электрической цепи

Номер

варианта

1

2

3

4

5

6

7

8

Е, В

10,0

9,5

9,0

8,5

8,0

8,5

9,0

9,5

r, Ом

4,8

5,7

6,6

7,5

6,4

7,3

8,2

9,1

5. Установите сопротивление внешней цепи 2 Ом, нажмите кнопку «Счёт» и запишите показания электроизмерительных приборов в соответствующие строки таблицы 2.

6. Последовательно увеличивайте с помощью движка регулятора сопротивление внешней цепи на 0,5 Ом от 2 Ом до 20 Ом и, нажимая кнопку «Счёт», записывайте показания электроизмерительных приборов в таблицу 2.

7. Вычислите по формулам (2), (7), (8), (9) Р1, Р2, Рполн и h для каждой пары показаний вольтметра и амперметра и запишите рассчитанные значения в табл.2.

8. Постройте на одном листе миллиметровой бумаге графики зависимости P1 = f(R), P2 = f(R), Pполн=f(R), h = f (R) и U = f(R).

9. Рассчитайте погрешности измерений и сделайте выводы по результатам проведённых опытов.

Таблица 2. Результаты измерений и расчётов

R, Ом

2,0

2,5

3,0

20

U, В

I, А

P1, Вт

P2, ВТ

Pполн, ВТ

h

Вопросы и задания для самоконтроля

  1. Запишите закон Джоуля-Ленца в интегральной и дифференциальной формах.
  2. Что такое ток короткого замыкания?
  3. Что такое полная мощность?
  4. Как вычисляется к.п.д. источника тока?
  5. Докажите, что наибольшая полезная мощность выделяется при равенстве внешнего и внутреннего сопротивлений цепи.
  6. Верно ли утверждение, что мощность, выделяемая во внутренней части цепи, постоянна для данного источника?
  7. К зажимам батарейки карманного фонаря присоединили вольтметр, который показал 3,5 В.
  8. Затем вольтметр отсоединили и на его место подключили лампу, на цоколе которой было написано: Р=30 Вт, U=3,5 В. Лампа не горела.
  9. Объясните явление.
  10. При поочерёдном замыкании аккумулятора на сопротивления R1 и R2 в них за одно и то же время выделилось равное количество тепла. Определите внутреннее сопротивление аккумулятора.

Источник

Пишу для школьников (для лучшего понимания ими основ физики). Материал излагаю в соответствии с признанной ныне научной трактовкой физических явлений. Критике существующей теории и глубоким теоретическим рассуждениям здесь не место.

На рисунке изображена замкнутая электрическая цепь, состоящая из источника постоянного тока и переменной нагрузки во внешней части цепи.

Источником постоянного тока может быть электрическая машина, о которой говорится в статье “Искровой разряд”; батарея гальванических элементов, аккумулятор и др.

Роль источника тока заключается в создании (генерировании) электрической энергии: в разделении положительных и отрицательных зарядов; в создании и поддерживании разности потенциалов между конечными точками цепи, в которую включена нагрузка (электрическая лампочка, электроплитка. электродвигатель и т. д.).

При прохождении тока через нагрузку электрическая энергия превращается в другие виды энергии :тепловую (в электроплитке); в тепло и свет (в электрической лампе); в механическую энергию (в электродвигателе).

Превращение энергии из одного вида в другой всегда связано с работой.

При прохождении тока по проводнику совершается работа, её совершают электрические силы (или электрическое поле). Кратко эту работу называют работой тока.

Рассматривая участок цепи, по которому проходит ток, получим следующее выражение для работы тока:

Работа тока равна произведению напряжения между концами участка на протекающий ток и время его протекания.

В случае, если участок цепи однородный (не содержит источника тока), то

тогда получим ещё две формулы для работы тока:

Если ток проходит через неподвижный проводник, то единственным результатом работы тока является его нагревание. Тогда количество выделившейся теплоты

Это запись закона Джоуля – Ленца.

Читайте также:  Полезна ли яичница с помидорами на завтрак

Если кроме нагревания ток совершает ещё механическую работу, например, приводя в действие электродвигатель (мотор), то работа

лишь частично переходит в тепло.

В этом случае работа тока больше количества выделившейся теплоты, но закон Джоуля – Ленца выполняется.

Работа, совершаемая током в единицу времени, называется мощностью тока:

Единицей мощности тока является 1 Вт:

1 Вт – мощность выделяемая током 1 А в проводнике, между концами которого поддерживается напряжение 1 В.

Основная формула мощности для участка цепи:

Мощность постоянного тока на любом участке цепи выражается произведением силы тока на напряжение между концами участка цепи.

Так как для однородного участка цепи

то мощность можно найти ещё по формулам:

Обычно говорят не о работе, а о потребляемой из сети некоторым прибором (электроплитка, лампочки и др.) или двигателем (мотором) мощности электрического тока. Говоря о мощности (например, электродвигателя), отмечают, что работа двигателя совершается за счёт тока.

На приборах часто отмечается потребляемая ими мощностьмощность, необходимая для нормальной работы этого прибора.

Согласно закону сохранения энергии, для замкнутой электрической цепи можно записать:

Здесь

есть полная или затраченная работа, совершаемая сторонними силами, существующими внутри источника, по переносу заряда по цепи.

В гальваническом элементе такими силами являются силы химической реакции.

– это полезная работа, совершаемая электрическим полем при прохождении тока через нагрузку;

это работа, совершаемая внутри источника, по преодолению его внутреннего сопротивления.

Так как работа, совершённая за единицу времени, есть мощность, то из уравнения (1) получим выражение для мощности:

Здесь

есть полная или затраченная мощность, это мощность развиваемая источником тока.

это мощность выделяемая внутри источника тока

это полезная мощность, создаваемая во внешней части цепи (на нагрузке).

Здесь U – напряжение на зажимах источника при замкнутой цепи (при разомкнутой цепи оно равно ЭДС источника).

Так как для однородного участка цепи напряжение равно произведению тока на сопротивление, то полезную мощность можно найти ещё по следующей формуле:

Ток в замкнутой цепи

тогда формулу для полезной мощности можно записать так:

Проанализируем зависимость полезной мощности от сопротивления нагрузки.

При коротком замыкании вся развиваемая источником мощность выделяется на его внутреннем сопротивлении в виде теплоты.

Таким образом, полезная мощность, развиваемая во внешней цепи, достигает максимального значения тогда, когда сопротивление нагрузки равно внутреннему сопротивлению источника.

На следующем рисунке показан график зависимости полезной мощности от сопротивления нагрузки.

Получена формула для нахождения максимальной полезной мощности

При этом ток в цепи в два раза меньше тока короткого замыкания:

Но чему при этом будет равно КПД источника?

Коэффициент полезного действия (КПД) источника показывает, какая часть затраченной (полной) работы источника пошла на пользу или КПД есть отношение полезной работы к затраченной:

Получается, что если добиваться максимальной мощности во внешней цепи, то получим КПД работы всего 50%, то есть половина затраченной мощности источника расходуется бесполезно – переходит в тепло, нагревая источник тока.

Выгоднее брать сопротивление нагрузки больше внутреннего сопротивления источника. Тогда ток в цепи уменьшится, а КПД источника увеличится.

Подумайте над решением следующих задач.

1. ЭДС аккумулятора 2 В, его внутреннее сопротивление 0,4 Ом, сопротивление внешней цепи 1 Ом. Найти разность потенциалов на зажимах аккумулятора и КПД его работы. Ответ: 1,43 В; 71 %.

2. Какую максимальную полезную мощность может выделить аккумулятор с ЭДС 10 В и внутренним сопротивлением 1 Ом? Каково при этом сопротивление внешней цепи? Ответ: 25 Вт; 1 Ом.

3. КПД источника тока, замкнутого на внешнее сопротивление R, равно 60%. Каков будет КПД источника, если внешнее сопротивление увеличить в 6 раз? Ответ: 90%.

Ответ: 7,7 Вт; 12 Вт; 40%; 25%.

Ответ: 2,7 10 4 кг.

К.В. Рулёва

Подписывайтесь на канал. Ставьте лайки. Пишите комментарии. Сообщите друзьям о существовании этого канала.

Предыдущая запись: Решение задач на мощность тока.

Следующая запись: Ещё раз о зарядке и разрядке конденсатора.

Ссылки на занятия до электростатики даны в Занятии 1.

Ссылки на занятия (статьи), начиная с электростатики, даны в конце Занятия 45.

Ссылки на занятия (статьи), начиная с теплового действия тока, даны в конце Занятия 58.

Источник

Рассмотрим
электрическую цепь, состоящую из
источника постоянного тока и внешнего
сопротивления R
(рис. 1). При протекании тока через
такую цепь источником ЭДС выполняется
работа и в цепи выделяется мощность.

Полезной
мощностью называют
мощность, которая выделяется на внешнем
сопротивлении. Из закона Джоуля-Ленца
(10*) полезная
мощность равняется
Зависимость полезной мощности от сопротивления внешней цепи,
а из закона Ома для участка цепиЗависимость полезной мощности от сопротивления внешней цепи.
Тогда полезная мощность будет

Зависимость полезной мощности от сопротивления внешней цепи,

(1)

где
Зависимость полезной мощности от сопротивления внешней цепи– падение напряжения на внешнем
сопротивлении. При протекании тока по
цепи также выделяется „бесполезная”
мощность – разогревается источник ЭДС.
По закону Джоуля-Ленца эта мощность
равняетсяЗависимость полезной мощности от сопротивления внешней цепи.
Полная мощность, которая выделяется во
всей цепи, равняетсяЗависимость полезной мощности от сопротивления внешней цепи.
Используя закон Ома для полной цепиЗависимость полезной мощности от сопротивления внешней цепи,
можно найти полную мощность

Зависимость полезной мощности от сопротивления внешней цепи.

(2)

Итак,
полная мощность, которая выделяется в
цепи, равняется произведению силы тока
на ЭДС источника тока.

Пусть
в цепи можно менять внешнее сопротивление
Зависимость полезной мощности от сопротивления внешней цепи.
Проанализируем, как полезная и полная
мощности зависят от силы тока и внешнего
сопротивления.

Полезная
мощность

равняется разности между полной мощностью
и „бесполезной”:

Зависимость полезной мощности от сопротивления внешней цепи.

(3)

Зависимость полезной мощности от сопротивления внешней цепи

Зависимость полезной мощности от сопротивления внешней цепи

Рис. 2

Из этого
выражения видно, что полезная мощность
является квадратичной функцией силы
тока I.
График этой функции будет представлять
собой параболу (рис. 2).

Из рис. 2
вытекает, что
Зависимость полезной мощности от сопротивления внешней цепив двух случаях:

  • когда
    цепь разомкнута (R = ∞),
    то сила тока в цепи I = 0;

  • когда
    возникло короткое заключение, при этом
    R = 0,
    а сила тока в цепи будет максимальной
    Зависимость полезной мощности от сопротивления внешней цепи.

Меняя
величину внешнего сопротивления, можно
достичь некоторого значения силы тока
в цепи, при котором полезная мощность
будет максимальной. Найдем этот ток.
Для этого найдем первую производную
Зависимость полезной мощности от сопротивления внешней цепии приравняем ее нулю. Из выражения (3)
имеем:

Зависимость полезной мощности от сопротивления внешней цепи.

(4)

Отсюда
вытекает

Зависимость полезной мощности от сопротивления внешней цепи,

(5)

а ток
Зависимость полезной мощности от сопротивления внешней цепи,
при котором выделяется максимальная
полезная мощность, равняетсяЗависимость полезной мощности от сопротивления внешней цепи.
С другой стороны, на основании закона
Ома для полной цепиЗависимость полезной мощности от сопротивления внешней цепи,
гдеЗависимость полезной мощности от сопротивления внешней цепи– сопротивление, при котором выделяется
максимальная полезная мощность.
Приравнивая два последних выраженияЗависимость полезной мощности от сопротивления внешней цепи,
находим, что

Зависимость полезной мощности от сопротивления внешней цепи.

(6)

Таким
образом, полезная
мощность будет максимальной при условии
равенства внешнего и внутреннего
сопротивлений
.

Зависимость
полезной мощности от внешнего сопротивления
можно найти из закона
Джоуля-Ленца
Зависимость полезной мощности от сопротивления внешней цепии закона Ома для полной цепиЗависимость полезной мощности от сопротивления внешней цепи

Зависимость полезной мощности от сопротивления внешней цепи.

(7)

График
зависимости
Зависимость полезной мощности от сопротивления внешней цепипоказан на рис. 3 (криваяб).
Максимум функции
Зависимость полезной мощности от сопротивления внешней цепиможно найти, приравниваяЗависимость полезной мощности от сопротивления внешней цепинулю

Зависимость полезной мощности от сопротивления внешней цепи.

(8)

Из
(8) также вытекает ожидаемое равенство
Зависимость полезной мощности от сопротивления внешней цепи.

Зависимость полезной мощности от сопротивления внешней цепи

а
– полная мощность

б
– корисна потужність

Рис.
3

Рассмотрим
теперь, как полная мощность
зависит от внешнего сопротивления.
Используя выражение (2) и закон Ома для
полной цепи
Зависимость полезной мощности от сопротивления внешней цепинаходим зависимость полной мощности
от внешнего сопротивления:

Зависимость полезной мощности от сопротивления внешней цепи.
(9)

График этой
зависимости показана на рис. 3 (кривая
а). При
изменении внешнего сопротивления от
нуля (короткое заключение) до бесконечности
(цепь разомкнута) полная мощность будет
убывать от максимального значения
Зависимость полезной мощности от сопротивления внешней цепидо нуля.

    1. Зависимость
      коэффициента полезного действия
      источника электрического тока от силы
      тока и внешнего сопротивления цепи

Читайте также:  Цветная капуста все о ней не полезные свойства

Коэффициент
полезного действия
(КПД) равняется отношению полезной
мощности (1) к полной мощности (2), которая
выделяется во всей цепи

Зависимость полезной мощности от сопротивления внешней цепи

(10)

Сначала
найдем зависимость КПД
от силы тока
. Если
разделить выражение (3) для полезной
мощности на выражение (1) для полной
мощности, получим

Зависимость полезной мощности от сопротивления внешней цепи
(11)

Итак,
КПД представляет собой линейную функцию
от силы тока (рис. 4). Когда I → 0
(цепь разомкнут), то
Зависимость полезной мощности от сопротивления внешней цепи.
При коротком заключенииЗависимость полезной мощности от сопротивления внешней цепи,
ток короткого заключения

Зависимость полезной мощности от сопротивления внешней цепи

(12)

и
КПД будет
Зависимость полезной мощности от сопротивления внешней цепи.

Чтобы найти
зависимость КПД от
внешнего сопротивления
,
подставим в (9) выражение для
Зависимость полезной мощности от сопротивления внешней цепииз закона Ома для участки цепиЗависимость полезной мощности от сопротивления внешней цепи,
а выражение дляЗависимость полезной мощности от сопротивления внешней цепи– из закона Ома для полной цепиЗависимость полезной мощности от сопротивления внешней цепи.
Тогда

Зависимость полезной мощности от сопротивления внешней цепи.

(13)

Из соотношения (13)
вытекает:

  • при
    R® 0
    (короткое заключение,
    Зависимость полезной мощности от сопротивления внешней цепи)Зависимость полезной мощности от сопротивления внешней цепи;

  • при
    R® ¥
    ( цепь разомкнут,
    Зависимость полезной мощности от сопротивления внешней цепи)Зависимость полезной мощности от сопротивления внешней цепи;

  • при
    R = r
    (условие максимума полезной мощности)
    Зависимость полезной мощности от сопротивления внешней цепи.

Приведенный
анализ показывает, что при увеличении
внешнего сопротивления КПД асимптотично
приближается к единице (рис. 5).

Соседние файлы в папке doc-формат

  • #
  • #
  • #
  • #
  • #
  • #

Источник

Зависимость полезной мощности от сопротивления внешней цепи

Давайте вместе разберемся в зависимости сопротивления, напряжения, силы тока и мощности на примере движения воды. В реальном времени на наших интерактивных примерах вы сможете увидеть как изменяется один из искомых параметров, если вы знаете величины двух других.

Существует всего 2 базовых формулы которые помогут вам понять взаимосвязь между силой тока(Амер), напряжением(Вольт), сопротивлением (Ом) и мощностью (Ватт).
Зная хотя бы два из перечисленных параметра вы всегда можете рассчитать два других.

ЗАКОН ОМА

Базовая формулаP=I*EE=I*R
Расчет напряженияE=P/IE=I*RE=SQR(P*R)
Расчет силы токаI=P/EI=E/RI=SQR(P/R)
Расчет мощностиP=I*EP=E 2 /RP=I 2 *R
Расчет сопротивленияR=E 2 /PR=E/IR=P/I 2

P — Мощность (Ватт)
E — Напряжение (Вольт)
I — Сила тока (Ампер)
R — Электрическое сопротивление (Ом)
SQR — квадратный корень

Мы используем переменную E для обозначения напряжения, иногда вы можете встретить обозначение V для напряжения. Не дайте себя запутать названиям переменных.

Изменение сопротивления:

На следующей схеме вы видите разность сопротивлений между системами изображенными на правой и левой стороне рисунка. Сопротивление давлению воды в кране противодействует задвижка, в зависимости от степени открытия задвижки изменяется сопротивление.

Сопротивление в проводнике изображено в виде сужения проводника, чем более узкий проводник тем больше он противодействует прохождению тока.

Вы можете заметить что на правой и на левой стороне схемы напряжение и давление воды одинаково.

Вам необходимо обратить внимание на самый важный факт.

В зависимости от сопротивления увеличивается и уменьшается сила тока.

Слева при полностью открытой задвижке мы видим самый большой поток воды. И при самом низком сопротивлении, видим самый большой поток электронов (Ампераж) в проводнике.

Справа задвижка закрыта намного больше и поток воды тоже стал намного больше.

ужение проводника тоже уменьшилось вдвое, я значит вдвое увеличилось сопротивление протеканию тока. Как мы видим через проводник из за выского сопротивления протекает в два раза меньше электронов.

Обратите внимание что сужение проводника изображенное на схеме используется только для примера сопротивления протеканию тока. В реальных условиях сужения проводника не сильно влияет на протекающий ток. Значительно большее сопротивление могут оказывать полупроводники и диэлектрики.

Сужающийся проводник на схеме изображен лишь для примера, для понимания сути происходящего процесса.

Формула закона Ома — зависимость сопротивления и силы тока

Как вы видите из формулы, сила тока обратнапропорциональна сопротивлению цепи.

Больше сопротивление = Меньше ток

* при условии что напряжение постоянно.

Изменение напряжения.

На изображенной схеме во всех системах сопротивление имеет одинаковую величину.
В этот раз на картинке изменяется сопротивление/давление.

Вы можете увидеть что при увеличении напряжения приводит к увеличению протекающего тока даже при постоянном сопротивлении.

Формула закона Ома — зависимость напряжения и силы тока

Обратите внимание что сила тока протекающего в проводнике прямопропорциональна напряжению.

Больше напряжение = Больше сила тока

* при условии что сопротивление постоянно.

Математический рассчет

Рассмотрим пример.
У нас есть аккумуляторная батарея с напряжением питания 12 Вольт. К ней напрямую подключен резистор (сопротивление) 10 Ом. Для того что бы рассчитать какая мощность приложена к нашему резистору, можно воспользоваться формулой.

P = E2/R
P = 122/10
P = 144/10.
P = 14.4 watts

Мощность рассеиваемая на резисторе состовляет 14,4 Ватта.

Если вы хотите определить величину тока протекающего через проводник, мы используем другую формулу

I = E/R
I = 12/10
I = 1.2 amps

Сила тока протекающего через цепь составляет 1,2 Ампера
—————-
Калькуляторы зависимости напряжения, силы тока и сопротивления.

1. Калькулятор рассеиваемой мощности и протекающей силы тока в зависимости от сопротивления и приложенного напряжения.

Демо закона Ома в реальном времени.

Для справки
В данном примере вы можете увеличивать напряжение и сопротивление цепи. Данные изменения в реальном времени будут изменять силу тока протекающего в цепи и мощность рассеиваемую на сопротивлении.

Если рассматривать аудио системы — вы должны помнить что усилитель выдает определенное напряжение на определенную нагрузку (сопротивление). Соотношение двух этих величин определяет мощность.
Усилитель может выдать ограниченную величину напряжения в зависимости от внутреннего блока питания и источника тока. Так же точно ограничена и мощность которую может подать усилитель на определенную нагрузку (к примеру 4 Ома).
Для того что бы получить больше мощности, вы можете подключить к усилителю нагрузку с меньшим сопротивлением (к примеру 2 Ома). Учтите что при использовании нагрузки с меньшим сопротивлением — скажем в два раза (было 4 Ома, стало 2 Ома) — мощность тоже возрастет в два раза.(при условии что данную мощность может обеспечить внутренний блок питания и источник тока).
Если мы возьмем для примера моно усилитель мощностью 100 Ватт на нагрузку 4 Ома, зная что он может выдать напряжение не более 20 Вольт на нагрузку.
Если вы поставите на нашем калькуляторе бегунки
Напряжение 20 Вольт
Сопротивление 4 Ома
Вы получите
Мощность 100 Ватт

Если вы сдвинете бегунок сопротивления на величину 2 Ома, вы увидите как мощность удвоится и составит 200 Ватт.

В общем примере источником тока является аккумуляторная батарея (а не усилитель звука) но зависимости силы тока, напряжения, сопротивления и сопротивления одинаковы во всех цепях.

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

На уроке речь пойдет об одном из центральных законов электродинамики – законе Ома для участка цепи. Будет изложена история его получения и указана формула с графической зависимостью.

История открытия закона Ома для участка цепи

Вспомним, что несколько предыдущих уроков были посвящены изучению таких физических величин, как сила тока, напряжение и сопротивление. Мы рассмотрели природу возникновения электрического сопротивления, единицу его измерения и вкратце указали, от каких общих факторов оно зависит. Также мы знаем, что сила тока зависит от электрического поля, которое возникает в проводнике, а напряжение зависит от работы этого поля. Но электрический ток – это упорядоченное движение заряженных частиц, которое также характеризуется работой электрического тока. Следовательно, должна быть какая-нибудь связь между всеми этими понятиями: сила тока, напряжение, сопротивление.

Читайте также:  15 полезных приемов из психологии которые полезно знать

Впервые определил эту зависимость в 1826 году немецкий физик Георг Ом (1789–1854) (рис. 1). Он провел очень большое количество экспериментов, в которых, прежде всего, исследовал зависимость силы тока в цепи от напряжения. Проводились его эксперименты следующим образом: ничего не меняя в электрической цепи, он подключал к ней различное большее число источников тока, в результате чего увеличивалось напряжение, подаваемое в цепь, что приводило к увеличению силы тока. Такие многочисленные эксперименты привели к получению закона силы тока от электрического сопротивления.

Опишем схему проведения экспериментов Георга Ома. В электрическую цепь он подключал проводник, на котором с помощью вольтметра и амперметра измерялись напряжение и сила тока соответственно, ключ и источник тока (рис. 2). Обратим внимание на то, что в цепи подключено несколько источников тока, и изменение их количества позволяет пронаблюдать за изменением силы тока в цепи в зависимости от напряжения.

Рис. 2. Схема экспериментов Г. Ома

В результате измерений прослеживается зависимость , где напряжение измеряется на зажимах AB, т. е. на проводнике.

Для того чтобы пронаблюдать зависимость силы тока от сопротивления, в той же цепи теперь следует не менять количество источников тока, а менять проводники, т. е. сопротивление цепи. Георг Ом поступил следующим образом: вместо одного проводника он подключил другой с вдвое большей длиной, т. е. с вдвое большим сопротивлением (почему это так, вы узнаете на следующем уроке). Аналогично он подключал и проводники с другими длинами и получил зависимость такого вида: . Т. е. при увеличении сопротивления проводника сила тока в нем уменьшается.

На графике зависимость силы тока в проводнике от сопротивления выглядит следующим образом (рис. 3).

Рис. 3. Зависимость силы тока в проводнике от сопротивления

Такая зависимость называется обратно пропорциональной. Эту зависимость Ому пришлось достаточно долго получать, но именно это и привело его к выводу важнейшего закона электродинамики – закону Ома для участка цепи. Собрав вместе те две зависимости, которые мы показали выше, Ом и пришел к своему закону.

Закон Ома для участка цепи

Закон Ома для участка цепи: сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению:

Замечание. Этот закон лежит в основе науки под названием электротехника.

Т. к. напряжение в законе рассматривается на концах проводника и учитывается сопротивление самого проводника, то закон применим именно к участку цепи, т. е. к какой-либо его части.

напряжение, В;

сила тока, А;

сопротивление, Ом.

При работе с законом Ома следует понимать, что он выполним отдельно для каждого рассматриваемого участка цепи с различными значениями входящих в него параметров.

На следующем уроке речь пойдет о том, от каких параметров зависит сопротивление проводника.

Список литературы

  1. Генденштейн Л.Э, Кайдалов А.Б., Кожевников В.Б. / Под ред. Орлова В.А., Ройзена И.И. Физика 8. – М.: Мнемозина.
  2. Перышкин А.В. Физика 8. – М.: Дрофа, 2010.
  3. Фадеева А.А., Засов А.В., Киселев Д.Ф. Физика 8. – М.: Просвещение.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

Домашнее задание

1. Стр. 102: вопросы № 1–7, упражнение № 19. Перышкин А.В. Физика 8. – М.: Дрофа, 2010.

2. Вычислите силу тока в резисторе, сопротивление которого – 1200 Ом, а напряжение – 36 В.

3. Каким образом изменится сила тока в цепи, если количество последовательно соединенных источников тока в ней увеличить втрое, а подключенный к ней проводник укоротить вдвое? Кроме проводника и источников тока в цепи элементов нет.

4. * Соберите с помощью родителей или учителя схему, аналогичную той, с помощью которой Георг Ом получил свой известный закон. Проведите серию экспериментов, доказывающую справедливость закона Ома для участка цепи. Оцените погрешности измерений и результаты обсудите с учителем.

Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.

Как рассчитать мощность резистора?

У резистора есть довольно важный параметр, который целиком и полностью влияет на надёжность его работы. Этот параметр называется мощностью рассеивания. Он уже упоминался в статье о параметрах резистора.

Сама по себе мощность постоянного тока рассчитывается по простой формуле:

Как видим, мощность зависит от напряжения и тока. В реальной цепи через резистор протекает определённый ток. Поскольку резистор обладает сопротивлением, то под действием протекающего тока резистор нагревается. На нём выделяется какое-то количество тепла. Это и есть та мощность, которая рассеивается на резисторе.

Если в схему установить резистор меньшей мощности рассеивания, чем требуется, то резистор будет нагреваться и в результате сгорит. Поэтому, если в схеме нужно заменить резистор мощностью 0,5 Ватт, то ставим на 0,5 Ватт и более. Но никак не меньше !

Каждый резистор рассчитан на свою мощность. Стандартный ряд мощностей рассеивания резисторов состоит из значений:

Чем больше резистор по размерам, тем, как правило, на большую мощность рассеивания он рассчитан.

Допустим, у нас есть резистор с номинальным сопротивлением 100 Ом. Через него течёт ток 0,1 Ампер. На какую мощность должен быть рассчитан этот резистор?

Тут нам потребуется формула. Выглядит она так:

R(Ом) – сопротивление цепи (в данном случае резистора);

I(А) – ток, протекающий через резистор.

Все расчёты следует производить, строго соблюдая размерность. Так, если сопротивление резистора не 100 Ом, а 1 кОм, то в формулу нужно подставить значение в Омах, т.е. 1000 Ом (1 кОм = 1000 Ом). Тоже правило касается и других величин (тока, напряжения).

Рассчитаем мощность для нашего резистора:

Мы получили мощность 1 Ватт. Теперь небольшое отступление.

В реальную схему необходимо устанавливать резистор с мощностью в полтора – два раза выше рассчитанной.

Поэтому нам подойдёт резистор мощностью 2 Вт (см. стандартный ряд мощностей резисторов).

Также есть и другая формула для расчёта мощности. Она применяется в том случае, если неизвестен ток, который протекает через резистор.

Всё бы хорошо, но в жизни бывают случаи, когда применяется последовательное или параллельное соединение резисторов. Как рассчитать мощность рассеивания для каждого из резисторов в последовательной или параллельной цепи?

Допустим, нам требуется заменить резистор сопротивлением 100 Ом. Протекающий через него ток равен 0,1 Ампер. Следовательно, мощность этого резистора 1 Ватт.

Для его замены можно применить два соединённых последо?