Во сколько раз увеличиться коэффициент полезного действия цикла карно

Во сколько раз увеличиться коэффициент полезного действия цикла карно thumbnail

6.3. Второй закон термодинамики

6.3.1. Коэффициент полезного действия тепловых двигателей. Цикл Карно

Второе начало термодинамики возникло из анализа работы тепловых двигателей (машин). В формулировке Кельвина оно выглядит следующим образом: невозможен круговой процесс, единственным результатом которого является превращение теплоты, полученной от нагревателя, в эквивалентную ей работу.

Схема действия тепловой машины (теплового двигателя) представлена на рис. 6.3.

Во сколько раз увеличиться коэффициент полезного действия цикла карно

Рис. 6.3

Цикл работы теплового двигателя состоит из трех этапов:

1) нагреватель передает газу количество теплоты Q
1;

2) газ, расширяясь, совершает работу A;

3) для возвращения газа в исходное состояние холодильнику передается теплота Q
2.

Из первого закона термодинамики для циклического процесса

Q = A,

где Q — количество теплоты, полученное газом за цикл, Q = Q
1 − Q
2; Q
1 — количество теплоты, переданное газу от нагревателя; Q
2 — количество теплоты, отданное газом холодильнику.

Поэтому для идеальной тепловой машины справедливо равенство

Q
1 − Q
2 = A.

Когда потери энергии (за счет трения и рассеяния ее в окружающую среду) отсутствуют, при работе тепловых машин выполняется закон сохранения энергии

Q
1 = A + Q
2,

где Q
1 — теплота, переданная от нагревателя рабочему телу (газу); A — работа, совершенная газом; Q
2 — теплота, переданная газом холодильнику.

Коэффициент полезного действия тепловой машины вычисляется по одной из формул:

η=AQ1⋅100 %, η=Q1−Q2Q1⋅100 %, η=(1−Q2Q1)⋅100 %,

где A — работа, совершенная газом; Q
1 — теплота, переданная от нагревателя рабочему телу (газу); Q
2 — теплота, переданная газом холодильнику.

Наиболее часто в тепловых машинах используется цикл Карно, так как он является самым экономичным.

Цикл Карно состоит из двух изотерм и двух адиабат, показанных на рис. 6.4.

Во сколько раз увеличиться коэффициент полезного действия цикла карно

Рис. 6.4

Участок 1–2 соответствует контакту рабочего вещества (газа) с нагревателем. При этом нагреватель передает газу теплоту Q
1 и происходит изотермическое расширение газа при температуре нагревателя T
1. Газ совершает положительную работу (A
12 > 0), его внутренняя энергия не изменяется (∆U
12 = 0).

Участок 2–3 соответствует адиабатному расширению газа. При этом теплообмена с внешней средой не происходит, совершаемая положительная работа A
23
приводит к уменьшению внутренней энергии газа: ∆U
23
= −A
23
, газ охлаждается до температуры холодильника T
2.

Участок 3–4 соответствует контакту рабочего вещества (газа) с холодильником. При этом холодильнику от газа поступает теплота Q
2 и происходит изотермическое сжатие газа при температуре холодильника T
2. Газ совершает отрицательную работу (A
34 < 0), его внутренняя энергия не изменяется (∆U
34 = 0).

Участок 4–1 соответствует адиабатному сжатию газа. При этом теплообмена с внешней средой не происходит, совершаемая отрицательная работа A
41
приводит к увеличению внутренней энергии газа: ∆U
41
= −A
41
, газ нагревается до температуры нагревателя T
1, т.е. возвращается в исходное состояние.

Коэффициент полезного действия тепловой машины, работающей по циклу Карно, вычисляется по одной из формул:

η=T1−T2T1⋅100 %, η=(1−T2T1)⋅100 %,

где T
1 — температура нагревателя; T
2 — температура холодильника.

Пример 9. Идеальная тепловая машина совершает за цикл работу 400 Дж. Какое количество теплоты передается при этом холодильнику, если коэффициент полезного действия машины равен 40 %?

Решение. Коэффициент полезного действия тепловой машины определяется формулой

η=AQ1⋅100 %,

где A — работа, совершаемая газом за цикл; Q
1 — количество теплоты, которое передается от нагревателя рабочему телу (газу).

Искомой величиной является количество теплоты Q
2, переданное от рабочего тела (газа) холодильнику, не входящее в записанную формулу.

Связь между работой A, теплотой Q
1, переданной от нагревателя газу, и искомой величиной Q
2 устанавливается с помощью закона сохранения энергии для идеальной тепловой машины

Q
1 = A + Q
2.

Уравнения образуют систему

η=AQ1⋅100 %,Q1=A+Q2,}

которую необходимо решить относительно Q
2.

Для этого исключим из системы Q
1, выразив из каждого уравнения

Q1=Aη⋅100 %,Q1=A+Q2}

и записав равенство правых частей полученных выражений:

Aη⋅100 %=A+Q2.

Искомая величина определяется равенством

Q2=Aη⋅100 %−A=A(100 %η−1).

Расчет дает значение:

Q2=400⋅(100 %40 %−1)=600 Дж.

Количество теплоты, переданной за цикл от газа холодильнику идеальной тепловой машины, составляет 600 Дж.

Пример 10. В идеальной тепловой машине от нагревателя к газу поступает 122 кДж/мин, а от газа холодильнику передается 30,5 кДж/мин. Вычислить коэффициент полезного действия данной идеальной тепловой машины.

Решение. Для расчета коэффициента полезного действия воспользуемся формулой

η=(1−Q2Q1)⋅100 %,

где Q
2 — количество теплоты, которое передается за цикл от газа холодильнику; Q
1 — количество теплоты, которое передается за цикл от нагревателя рабочему телу (газу).

Преобразуем формулу, выполнив деление числителя и знаменателя дроби на время t:

η=(1−Q2/tQ1/t)⋅100 %,

где Q
2/t — скорость передачи теплоты от газа холодильнику (количество теплоты, которое передается газом холодильнику в секунду); Q
1/t — скорость передачи теплоты от нагревателя рабочему телу (количество теплоты, которое передается от нагревателя газу в секунду).

В условии задачи скорость передачи теплоты задана в джоулях в минуту; переведем ее в джоули в секунду:

  • от нагревателя газу —

Q1t=122 кДж/мин=122⋅10360 Дж/с;

  • от газа холодильнику —

Q2t=30,5 кДж/мин=30,5⋅10360 Дж/с.

Рассчитаем коэффициент полезного действия данной идеальной тепловой машины:

η=(1−30,5⋅10360⋅60122⋅103)⋅100 %=75 %.

Пример 11. Коэффициент полезного действия тепловой машины, работающей по циклу Карно, равен 25 %. Во сколько раз увеличится коэффициент полезного действия, если температуру нагревателя увеличить, а температуру холодильника уменьшить на 20 %?

Решение. Коэффициент полезного действия идеальной тепловой машины, работающей по циклу Карно, определяется следующими формулами:

  • до изменения температур нагревателя и холодильника —

η1=(1−T2T1)⋅100 %,

где T
1 — первоначальная температура нагревателя; T
2 — первоначальная температура холодильника;

  • после изменения температур нагревателя и холодильника —

η2=(1−T′2T′1)⋅100 %,

где T′1 — новая температура нагревателя, T′1=1,2T1; T′2 — новая температура холодильника, T′2=0,8T2.

Уравнения для коэффициентов полезного действия образуют систему

η1=(1−T2T1)⋅100 %,η2=(1−0,8T21,2T1)⋅100 %,}

которую необходимо решить относительно η2.

Из первого уравнения системы с учетом значения η1 = 25 % найдем отношение температур

T2T1=1−η1100 %=1−25 %100 %=0,75

и подставим во второе уравнение

η2=(1−0,81,2⋅0,75)⋅100 %=50 %.

Искомое отношение коэффициентов полезного действия равно:

η2η1=50 %25 %=2,0.

Следовательно, указанное изменение температур нагревателя и холодильника тепловой машины приведет к увеличению коэффициента полезного действия в 2 раза.

Источник

В термодинамике цикл Карно́ или процесс Карно — это идеальный[1]круговой процесс, состоящий из двух адиабатных и двух изотермических процессов[2]. В процессе Карно термодинамическая система выполняет механическую работу за счёт обмена теплотой с двумя тепловыми резервуарами, имеющими постоянные, но различающиеся температуры. Резервуар с более высокой температурой называется нагревателем, а с более низкой температурой — холодильником[3].

Цикл Карно назван в честь французского учёного и инженера Сади Карно, который впервые его описал в своём сочинении «О движущей силе огня и о машинах, способных развивать эту силу» в 1824 году[4][5].

Поскольку идеальные процессы могут осуществляться лишь с бесконечно малой скоростью, мощность тепловой машины в цикле Карно равна нулю. Мощность реальных тепловых машин не может быть равна нулю, поэтому реальные процессы могут приближаться к идеальному процессу Карно только с большей или меньшей степенью точности.

Коэффициент полезного действия (КПД) любой тепловой машины не может превосходить КПД идеальной тепловой машины, работающей по циклу Карно с теми же самыми температурами нагревателя и холодильника[6]. По этой причине, позволяя оценить верхний предел КПД тепловой машины, цикл Карно важен для теории тепловых машин. В то же время КПД цикла Карно настолько чувствителен к отклонениям от идеальности (потерям на трение), что данный цикл никогда не применяли в реальных тепловых машинах[K 1][8].

Описание цикла Карно[править | править код]

Рис. 1. Цикл Карно в координатах T—S

Рис. 2. Цикл Карно в координатах p—V

Рис. 3. Цикл Карно на термодинамической поверхности идеального газа

Пусть тепловая машина состоит из нагревателя с температурой , холодильника с температурой и рабочего тела.

Цикл Карно состоит из четырёх обратимых стадий, две из которых осуществляются при постоянной температуре (изотермически), а две — при постоянной энтропии (адиабатически). Поэтому цикл Карно удобно представить в координатах (температура) и (энтропия).

1. Изотермическое расширение (на рис. 1 — процесс A→B). В начале процесса рабочее тело имеет температуру , то есть температуру нагревателя. При расширении рабочего тела его температура не падает за счет передачи от нагревателя количества теплоты , то есть расширение происходит изотермически (при постоянной температуре) . При этом объём рабочего тела увеличивается, оно совершает механическую работу, а его энтропия возрастает.

2. Адиабатическое расширение (на рис. 1 — процесс B→C). Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой. При этом температура тела уменьшается до температуры холодильника , тело совершает механическую работу, а энтропия остаётся постоянной.

3. Изотермическое сжатие (на рис. 1 — процесс C→D). Рабочее тело, имеющее температуру , приводится в контакт с холодильником и начинает изотермически сжиматься под действием внешней силы, отдавая холодильнику количество теплоты . Над телом совершается работа, его энтропия уменьшается.

4. Адиабатическое сжатие (на рис. 1 — процесс D→A). Рабочее тело отсоединяется от холодильника и сжимается под действием внешней силы без теплообмена с окружающей средой. При этом его температура увеличивается до температуры нагревателя, над телом совершается работа, его энтропия остаётся постоянной.

Обратный цикл Карно[править | править код]

В термодинамике холодильных установок и тепловых насосов рассматривают обратный цикл Карно, состоящий из следующих стадий[9][10]: адиабатического сжатия за счёт совершения работы (на рис. 1 — процесс В→Б); изотермического сжатия с передачей теплоты более нагретому тепловому резервуару (на рис. 1 — процесс Б→А); адиабатического расширения (на рис. 1 — процесс А→Г); изотермического расширения с отводом теплоты от более холодного теплового резервуара (на рис. 1 — процесс Г→В).

КПД тепловой машины Карно[править | править код]

Количество теплоты, полученное рабочим телом от нагревателя при изотермическом расширении, равно

Аналогично, при изотермическом сжатии рабочее тело отдаёт холодильнику

Отсюда коэффициент полезного действия тепловой машины Карно равен

Первая и вторая теоремы Карно[править | править код]

Из последнего выражения следует, что КПД тепловой машины, работающей по циклу Карно, зависит только от температур нагревателя и холодильника, но не зависит ни от устройства машины, ни от вида или свойств её рабочего тела. Этот результат составляет содержание первой теоремы Карно[11]. Кроме того, из него следует, что КПД может составлять 100 % только в том случае, если температура холодильника равна абсолютному нулю. Это невозможно, но не из-за недостижимости абсолютного нуля (этот вопрос решается только третьим началом термодинамики, учитывать которое здесь нет необходимости), а из-за того, что такой цикл или нельзя замкнуть, или он вырождается в совокупность двух совпадающих адиабат и изотерм.

Поэтому максимальный КПД любой тепловой машины не может превосходить КПД тепловой машины Карно, работающей при тех же температурах нагревателя и холодильника. Это утверждение называется второй теоремой Карно[12][13]. Оно даёт верхний предел КПД любой тепловой машины и позволяет оценить отклонение реального КПД от максимального, то есть потери энергии вследствие неидеальности тепловых процессов.

Связь между обратимостью цикла и КПД[править | править код]

Для того чтобы цикл был обратимым, в нём должна быть исключена передача теплоты при наличии разности температур, иначе нарушается условие адиабатичности процесса. Поэтому передача теплоты должна осуществляться либо в изотермическом процессе (как в цикле Карно), либо в эквидистантном процессе (обобщённый цикл Карно или, для примера, его частный случай Цикл Брайтона). Для того чтобы менять температуру рабочего тела от температуры нагревателя до температуры холодильника и обратно, необходимо использовать либо адиабатические процессы (они идут без теплообмена и, значит, не влияют на энтропию), либо циклы с регенерацией тепла при которых нет передачи тепла при разности температур. Мы приходим к выводу, что любой обратимый цикл может быть сведён к циклу Карно.

Примером обратимого цикла, не являющегося циклом Карно, но интегрально совпадающим с ним, является идеальный цикл Стирлинга: в двигателе Стирлинга добавлен регенератор, обеспечивающий полное приближение цикла к циклу Карно с достижением обратимости и тех же величин КПД[14]. Возможны и другие идеальные циклы, в которых коэффициент полезного действия определяется по той же формуле, что и для циклов Карно и Стирлинга, например цикл Эрикссона (англ.)русск., состоящий из двух изобар и двух изотерм[14].

Если же в цикле возникает передача теплоты при наличии разности температур, а таковыми являются все технические реализации термодинамических циклов, то цикл утрачивает свойство обратимости. Иначе говоря, посредством отведённой в цикле механической работы становится невозможным получить исходную теплоту. КПД такого цикла будет всегда меньше, чем КПД цикла Карно.

См. также[править | править код]

  • Термодинамические циклы
  • Первое начало термодинамики
  • Второе начало термодинамики
  • Термодинамическая энтропия
  • Термодинамические потенциалы

Комментарии[править | править код]

  1. ↑ В реальных тепловых машинах цикл Карно не используют, поскольку практически невозможно осуществить процессы изотермического сжатия и расширения. Кроме того, полезная работа цикла, представляющая собой алгебраическую сумму работ во всех четырех составляющих цикл частных процессах, даже в идеальном случае полного отсутствия потерь мала по сравнению с работой в каждом из частных процессов, то есть мы имеем дело с обычной ситуацией, когда итоговый результат представляет собой малую разность больших величин. Применительно к математическим вычислениям это означает высокую отзывчивость результата даже на небольшие вариации значений исходных величин, а в рассматриваемом нами случае соответствует высокой чувствительности полезной работы цикла Карно и его КПД к отклонениям от идеальности (потерям на трение). Эта связь с отклонениями от идеальности настолько велика, что с учетом всех потерь полезная работа цикла Карно приближается к нулю[7].

Примечания[править | править код]

  1. ↑ То есть без потерь, в первую очередь на трение.
  2. ↑ Карно цикл // Италия — Кваркуш. — М. : Советская энциклопедия, 1973. — (Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров ; 1969—1978, т. 11).
  3. ↑ Сивухин, Т. II. Термодинамика и молекулярная физика, 2005, с. 94.
  4. Carnot S. Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance. — Paris: Gauthier-Villars, Imprimeur-Libraire, 1878. — 102 p. (фр.)
  5. ↑ Второе начало термодинамики. (Работы Сади Карно — В. Томсон — Кельвин — Р. Клаузиус — Л. Больцман — М. Смолуховский) / Под. ред. А. К. Тимирязева. — Москва—Ленинград: Государственное технико-теоретическое издательство, 1934. — С. 17—61.
  6. ↑ Сивухин, Т. II. Термодинамика и молекулярная физика, 2005, с. 113—114.
  7. Бэр Г. Д., Техническая термодинамика, 1977, с. 112.
  8. ↑ Кинан Дж., Термодинамика, 1963, с. 93.
  9. ↑ Николаев Г. П., Лойко А. Э., Техническая термодинамика, 2013, с. 172.
  10. ↑ Бахшиева Л. Т. и др., Техническая термодинамика и теплотехника, 2008, с. 148.
  11. ↑ Сивухин, Т. II. Термодинамика и молекулярная физика, 2005, с. 95.
  12. ↑ Сивухин, Т. II. Термодинамика и молекулярная физика, 2005, с. 113.
  13. ↑ Румер Ю. Б., Рывкин М. Ш., Термодинамика, статистическая физика и кинетика, 2000, с. 35.
  14. 1 2 Крестовников А. Н., Вигдорович В. Н., Химическая термодинамика, 1973, с. 63.

Литература[править | править код]

  • Carnot S. Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance. — Paris: Gauthier-Villars, Imprimeur-Libraire, 1878. — 102 p. (фр.)
  • Бахшиева Л. Т., Кондауров Б. П., Захарова А. А., Салтыкова В. С. Техническая термодинамика и теплотехника / Под ред. проф А. А. Захаровой. — 2-е изд., испр. — М.: Академия, 2008. — 272 с. — (Высшее профессиональное образование). — ISBN 978-5-7695-4999-1.
  • Бэр Г. Д. Техническая термодинамика. — М.: Мир, 1977. — 519 с. (недоступная ссылка)
  • Кинан Дж. Термодинамика / Пер с англ. А. Ф. Котина под ред. М. П. Вукаловича. — М.—Л.: Госэнергоиздат, 1963. — 280 с.
  • Ландау Л. Д., Лифшиц Е. М. Статистическая физика. Часть 1. — Издание 3-е, доп. — М.: Наука, 1976. — 584 с. — («Теоретическая физика», том V).
  • Крестовников А. Н., Вигдорович В. Н. Химическая термодинамика. — 2-е изд., испр. и доп. — М.: Металлургия, 1973. — 256 с.
  • Николаев Г. П., Лойко А. Э. Техническая термодинамика. — Екатеринбург: УрФУ, 2013. — 227 с.
  • Румер Ю. Б., Рывкин М. Ш. Термодинамика, статистическая физика и кинетика. — 2-е изд., испр. и доп. — Новосибирск: Изд-во Носиб. ун-та, 2000. — 608 с. — ISBN 5-7615-0383-2.
  • Савельев И. В. Курс общей физики:Молекулярная физика и термодинамика. — М.: Астрель, 2001. — Т. 3. — 208 с. — 7000 экз. — ISBN 5-17-004585-9.
  • Сивухин Д. В. Общий курс физики. — Т. II. Термодинамика и молекулярная физика. — 5 изд., испр.. — М.: ФИЗМАТЛИТ, 2005. — 544 с. — ISBN 5-9221-0601-5.

Источник

Циклический процесс– совокупнось термодинамических процессов, в результате которых система возвращается в исходное состояние. На диаграммах состояния р – V (рис. 67) круговые процессы изображаются замкнутыми кривыми.

Работа, совершаемая газом за цикл, определяется площадью, охватываемой кривой; изменение внутренней энергии равно нулю:

.(3.2.32)

Первое начало термодинамикидля круговых процессов имеет вид

,(3.2.33)

где знак означает интегрирование по замкнутому контуру.

Прямым цикломназывается круговой процесс, в котором система совершает положительную работу

.(3.2.34)

Замкнутая кривая на диаграмме, изображающая прямой цикл, описывается по часовой стрелке.

Обратным циклом называется круговой процесс, в котором система совершает отрицательную работу

.(3.2.35)

На диаграмме обратный цикл изображается замкнутой кривой, проходимой против часовой стрелки.

Обратимый процесс– это такой термодинамический процесс, при котором изменение состояния системы, будучи проведено в обратном направлении, возвращает ее в исходное состояние так, чтобы система прошла через те же промежуточные состояния, что и в прямом процессе, но в обратной последовательности, а состояние тел вне системы осталось бы неизменным.

Необратимый процесс– это такой термодинамический процесс, после окончания которого систему нельзя вернуть в начальное состояние так, чтобы нигде в среде не осталось никаких изменений.

Любая тепловая машина состоит из трех частей – нагревателя, холодильника и рабочего тела.

Рабочее тело– термодинамическая система, совершающая круговой процесс и обменивающаяся энергией с другими телами. Обычно рабочим телом является газ.

Нагреватель(теплоотдатчик) – тело, сообщающее термодинамическойсистеме энергию в форме некоторого количества теплоты.

Холодильник(теплоприемник) – тело, получающее от термодинамическойсистемы энергию в виде некоторого количества теплоты.

Термодинамическийкоэффициент полезного действия тепловой машины – отношение полезной работы (работы, совершенной рабочим телом в рассматриваемом прямом круговом процессе) к сумме всех количеств тепла, сообщенных рабочему телу нагревателями:

,(3.2.36)

где – количество теплоты, полученное рабочим телом от нагревателя при температуре Т1,

– количество теплоты, Отданное рабочим телом холодильнику при температуре Т2,

А – работа, совершенная тепловой машиной за цикл,

h – термодинамический коэффициент полезного действия тепловой машины.

КПД цикла Карно

Цикл Карно– прямой круговой процесс, при котором выполненная системой работа максимальна. Цикл состоит из двух изотермических и двух адиабатических расширений и сжатий (рис. 68)

В процессе 1 – 1′ рабочее тело получает от нагревателя количество теплоты , а в процессе 2 – 2′ – рабочее тело отдает холодильнику количество, теплоты

Теорема Карно. Тепловая машина при данных значениях температур нагревателя и холо дильника, не может иметь большего КПД, чем машина, работающая по обратимому циклу Карно при тех же значениях температур нагревателя и холодильника.

Термический коэффициент полезного действия обратимого цикла Карно не зависит от природы рабочего тела и является функцией только абсолютных температур нагревателя – Т1 и холодильника Т2.

.(3.2.37)

Вобратимом цикле Карно выполняется соотношение:

,(3.2.38)

где Т1температура нагревателя, Т2температура холодильника, – количество теплоты, переданное системе нагревателем, – количество теплоты, переданное системой холодильнику.

Термический КПД произвольного обратимого цикла:

,(3.2.39)

где Тmах и Тmin – экстремальные значения температуры нагревателя и холодильника, участвующих в осуществлении рассматриваемого цикла.

Второе начало термодинамики

Первое начало термодинамики, выражает закон сохранения и превращения энергии для тепловых процессов, но не позволяет установить направление протекания термодинамических процессов.

Второе начало термодинамикиопределяет направление протекания термодинамических процессов и тем самым дает ответ на вопрос, какие процессы в природе могут протекать самопроизвольно.

Некоторые из формулировок второго начала термодинамики:

· невозможен процесс, единственным результатом которого является превращение всей теплоты, полученной от некоторого тела, в эквивалентную ей работу.

· невозможен процесс, единственным результатом которого является передача энергии в окорме теплоты от менее нагретого тела к более нагретому телу.

Прокрутить вверх

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

Источник