Вихревые токи вредные и полезные действия

Вихревые токи вредные и полезные действия thumbnail

Вихревые или еще так называемые цикличные токи могут нести в себе помимо вреда еще и пользу. С одной стороны, вихревые токи – это непосредственная причина потерь электроэнергии в проводнике либо же катушке. В то же самое время на этом эффекте построены современные индукционные печи, так что польза от таких токов есть. Давайте поговорим о пользе и вреде немного по подробней.

yandex.ru

Краткое определение

Для начала давайте дадим определение озвученному явлению. Вихревые токи – это такие токи, которые начинают протекать по причине воздействия переменного магнитного поля. При этом может изменяться не само поле, а положение проводника в этом поле, то есть если проводник начнет перемещаться в статичном поле, то в нем все равно образуются токи Фуко.

И траекторию протекания таких токов определить невозможно. Известно лишь то, что ток проходит в том месте, где сопротивление минимально.

Как открыли это явление

Изначально вихревые токи были зафиксированы в 1824 году ученым
Д.А. Араго во время проведения следующего опыта:

На одной оси были смонтированы медный диск и магнитная стрелка, диск располагался внизу, а стрелка несколько выше. Так вот, когда стрелку вращали, то медный диск также начинал вращаться, так как протекающие токи формировали магнитное поле, которое и вступало во взаимодействие с магнитной стрелкой.

Наблюдаемый эффект получил название – явление Араго.

yandex.ru

По истечении нескольких лет этот вопрос стал изучать Максвелл Фарадей, который как раз открыл закон электромагнитной индукции. Так вот, согласно открытому закону было сделано предположение, что магнитное поле оказывает непосредственное воздействие на атомарную решетку проводника.

И образующийся в результате данного воздействия электрический ток, всегда формирует магнитное поле во всем проводнике.

А подробно описал вихревые токи уже экспериментатор Фуко, именно поэтому второе название вихревых токов – токи Фуко. С историей немного познакомились, теперь давайте узнаем природу вихревых токов.

Природа вихревых токов

Замкнутые циклические токи могут образоваться в проводнике только в том варианте, когда магнитное поле, в котором находится проводник, имеет нестабильную структуру, то есть имеет вращение или изменяется со временем.

Из этого следует, что сила вихревых токов имеет прямую связь со скоростью изменения магнитного потока, проходящего через проводник.

По общепринятой теории электроны перемещаются в проводнике линейным образом из-за разности потенциалов, а это значит, что ток имеет прямое направление.

yandex.ru

Токи Фуко ведут себя совершенно по-другому и образуют вихревой замкнутый контур прямо в проводнике. При этом данные токи способны на взаимодействие с магнитным полем, которое их и создало.

Проводя исследование этих токов, ученый Ленц сделал вывод, что сгенерированное вихревыми токами магнитное поле не позволяет магнитному потоку, который и создал эти токи, измениться. При этом направленность силовых линий вихревого тока идентично вектору направления индукционного тока.

Вихревые токи и их вред

Давайте вспомним, как выглядит обычный трансформатор.

Так вот, если вы внимательно посмотрите на сердечник, то вы увидите, что он собран из отдельных пластин. А вам не кажется, что гораздо проще его было выполнить цельным?

Именно таким «дроблением» пытаются максимально снизить негативное воздействие токов Фуко. Ведь вихревые токи нагревают тело, в котором они протекают.

Как же они появляются в трансформаторе? Его работа и основана на принципах взаимодействия магнитных полей переменного характера, а как мы уже знаем переменное поле неизбежно порождает вихревые токи.

yandex.ru

Получается, что вихревой ток нагревает сердечник. А нагрев ведет к снижению КПД и сильный перегрев приведет к оплавлению изоляции, а значит разрушению трансформатора.

Как снижают потери

Данные потери могут быть описаны следующей формулой:

Как вы знаете, верно следующее утверждение: проводник с маленьким сечением обладает большим сопротивлением, а чем больше сопротивление проводника, тем меньший ток проходит через него.

Именно поэтому сердечник выполнен из цельного куска стали, а не собран из тонких пластин, которые изолированы друг от друга окалиной или слоем лака. Такой способ сборки сердечника максимально уменьшает потери в сердечнике, то есть сводят вихревые токи до минимума.

Полезное использование вихревых токов

Данные токи не только несут негатив. Их давно научились использовать с пользой. Так, например, свойства вихревых токов используются в индукционных счетчиках. Данные токи замедляют вращение алюминиевого диска, который вращается под действием магнитного поля.

Так же создание индукционных сталеплавильных печей оказало несоизмеримый вклад в развитие всей современной индустрии производства стали.

yandex.ru

Такие печи работают следующим образом: металл, который будут подвергать плавлению, помещают внутрь катушки, через которую начинают пропускать ток повышенной частоты. При этом магнитное поле формирует большие токи внутри металла, и последующий нагрев расплавляет металл.

В многоквартирных домах вы сможете увидеть индукционные плитки, принцип работы которых также основан на использовании эффекта образования вихревых токов.

Заключение

Это все, что я хотел вам рассказать о вихревых токах (токах Фуко). Если статья оказалась вам полезна или интересна, то оцените ее лайком. Спасибо за ваше внимание!

Источник

Природа вихревых токов

Вихревые токи имеют ту же природу, что и ток во вторичной обмотке трансформатора — все это индукционный ток.
Они обусловлены явлением ЭИ, открытым М. Фарадеем: при изменении магнитного потока, пересекающего проводник, в последнем возникает электродвижущая сила (ЭДС).

Если этот проводник — катушка из провода (обмотка трансформатора или электрогенератора), то ток течет по ее виткам.

Вред от вихревых токов

Если вы рассматривали конструкцию сетевого трансформатора 50 Гц, наверняка обратили внимание, что его сердечник набран из тонких листов, хотя может показаться что проще было сделать цельную литую конструкцию.

Дело в том, что так борются с вихревыми токами. Фуко установил нагрев тел, в которых они протекают. Так как работа трансформатора и основана на принципах взаимодействия переменных магнитных полей, то вихревые токи неизбежны.

Любой нагрев тел – это выделение энергии в виде тепла. В таком случае будут возникать потери в сердечнике. Чем это опасно? В электроустановке сильный нагрев приводит к разрушению изоляции обмоток и выходу из строя машины. Вихревые токи зависят от магнитных свойств сердечника.

Что такое токи Фуко?

В массивном теле, например, сердечнике (магнитопроводе) или корпусе агрегата, возникает объемный ток в виде движения заряженных частиц по круговым (вихреобразным) траекториям. Это называют вихревыми токами.

Изменение пересекающего проводник магнитного потока наблюдается в двух случаях:

  1. проводник и поле постоянного магнита двигаются друг относительно друга. Пример: сердечник ротора электрогенератора, в котором статор является магнитом (во многих видах магнит — ротор);
  2. относительное движение отсутствует, но меняются параметры магнитного поля. Для реализации такого варианта применяется электромагнит (смотанный в катушку провод), по которому пропускается переменный ток. Так же как и ток, поле будет периодически менять направленность силовых линий и интенсивность магнитного потока (в противофазе с током). Пример: магнитопровод трансформатора.

Это явление называют «токами Фуко» — в честь ученого Ж. Б. Л. Фуко, проведшего большую работу по их изучению. Первым же обнаружил данное явление французский ученый Д. Ф. Араго, проводивший в 1824-м году опыт с медным диском и вращающейся над ним магнитной стрелкой. Диск тоже начинал совершать аналогичные действия. Этот эффект стали называть в научных кругах «явлением Араго».

Магнитное поле токов Фуко

Исследователь не смог правильно объяснить механизм вращения, это сделал несколькими годами позже М. Фарадей, открыв ЭИ:

  1. плоский круглый предмет помещается в крутящееся магнитное поле;
  2. его воздействие на деталь выражается в наведении в ней вихревых токов;
  3. токи Фуко, в свою очередь, вступают во взаимодействие с магнитным полем;
  4. диск начинает крутиться.

Сила вихревых токов напрямую зависит от скорости изменения магнитного потока.

История открытия вихревых токов

В 1824 году французский физик Даниэль Араго впервые наблюдал действие вихревых токов на медный диск, расположенный под магнитной стрелкой на одной оси. При вращении стрелки в диске наводились вихревые токи, приводя его в движение. Это явление получило название «эффекта Араго» в честь его первооткрывателя. Исследования вихревых токов были продолжены французским физиком Жаном Фуко. Он подробно описал их природу и принцип действия, а также наблюдал явление нагрева токопроводящего ферромагнетика, вращаемого в статическом магнитном поле. Токи новой природы были тоже названы в честь исследователя.

Значение

Чем быстрее движется проводящее тело в поле, тем сильнее будут токи Фуко. Частота переменного тока и его амплитуда при возрастании тоже способствуют их увеличению.
При воздействии на проводящее тело электромагнитом с переменным током, вихревые токи возрастают с увеличением частоты тока и его амплитуды. Направление вращения «вихря» определяется аналогичным параметром магнитного потока. Если последний возрастает, то есть скорость его изменения положительна (dФ / dt > 0), вихревые токи вращаются по часовой стрелке.

При убывании магнитного потока (dФ / dt < 0) направление вращения меняется на противоположное. «Вихрь» зарядов в теле выбирает такую плоскость вращения, чтобы оказывать максимальное сопротивление вызывающей их силе (правило Ленца). Эта плоскость составляет прямой угол с силовыми линиями индуцирующего поля.

При этом вихревые токи сами генерируют магнитное поле, направленное против вызывающего их внешнего (индуцирующего) магнитного поля. В этом и состоит механизм взаимодействия токов Фуко с индуктором, заставившее вращаться диск в опыте Араго.

Токи Фуко в хозяйственной деятельности человека

Самый простой пример проявления токов Фуко в обыденной жизни — их воздействие на магнитопровод обмоточного трансформатора. Из-за воздействия наведенных токов появляется низкочастотная вибрация (трансформатор гудит), способствующая сильному нагреву. В этом случае энергия тратится впустую, а КПД установки падает. Для предотвращения значительных потерь сердечники трансформаторов не изготовляют цельными, а набирают из тонких полос электротехнической стали с низкой удельной электропроводностью. Полосы изолированы между собой электротехническим лаком или слоем окалины. Появление ферритовых элементов позволило выполнять малогабаритные магнитопроводы цельными.
Эффект от действия вихревых токов используется повсеместно в промышленности и машиностроении. Поезда на магнитной подвеске используют токи Фуко для торможения, высокоточные приборы имеют систему демпфирования указывающей стрелки, основанной на действии вихревых токов. В металлургии широко распространены индукционные печи, имеющие целый комплекс преимуществ перед аналогичными установками. В индукционной печи нагреваемый металл можно поместить в безвоздушное пространство, добиваясь его полной дегазации. Индукционная плавка черных металлов также получила широкое распространение в металлургии ввиду высокой экономичности установок.

Потери на вихревые токи

С целью поспособствовать распространению электромагнитного поля, обмотки трансформаторов и электрических машин наматывают на сердечник (магнитопровод). Это объясняется более высоким коэффициентом магнитопроницаемости металлов в сравнении с воздухом.

К примеру, у стали этот параметр в 100 раз превышает воздушный. В сердечнике также возникают вихревые токи и здесь они нежелательны, поскольку потребляют энергию и приводят к снижению КПД устройства.

Применяют следующие способы минимизации потерь на вихревые токи:

  1. шихтовка. Сердечник собирают из тонких пластин (0,1 – 0,5 мм), электрически изолированных друг от друга лаком, окалиной или иным диэлектриком. Плоскость пластины направлена вдоль силовых линий поля. Поэтому для токов Фуко, стремящихся двигаться в перпендикулярной этим линиям плоскости, такой сердечник имеет большое сопротивление. Аналогичными свойствами обладает стержень, собранный из изолированных друг от друга отрезков отожженной проволоки. Но они должны располагаться параллельно направлению магнитного потока (силовым линиям). Таким же способом ослабляются токи Фуко в проводах — их набирают из множества переплетенных изолированных жил (литцендрат). Заодно данный прием нейтрализует скин-эффект;
  2. изготовление сердечников из ферритов — магнитомягкое железо, получаемое путем спекания порошка. Структурно и по свойствам напоминает графит (такое же хрупкое). Имеет низкое электрическое сопротивление, но высокий коэффициент магнитопроницаемости (магнитодиэлектрик). Сердечник из феррита в шихтовке не нуждается — его делают цельным;
  3. введение в материал сердечника добавок, повышающих электрическое сопротивление. Так, в сталь добавляют кремний.

Практическое применение вихревых токов

Вихревые токи полезны в промышленности для рассеивания нежелательной энергии, например у поворотного кронштейна механического баланса, особенно если сила тока очень высокая. Магнит в конце опоры настраивает вихревые токи в металлической пластине, прикрепленной к концу кронштейна, скажем, ansys.

Схема: вихревые токи

Вихревые потоки, как учит физика, могут быть также использованы в качестве эффективного тормозного усилия в двигателях транзитного поезда. Электромагнитные приспособления и механизмы на поезде около рельсов специально настроены для создания вихревых токов. Благодаря движению тока, получается плавный спуск системы и поезд останавливается.

Закрученные токи вредны в измерительных трансформаторах и для человека. Металлический сердечник используется в трансформаторе, чтобы увеличить поток. К сожалению, вихревые токи, полученные в якоре или сердечнике, могут увеличить потери энергии. Построив металлическую сердцевину чередующихся слоев из проводящих и не проводящих энергию, материалов, размер индуцированных петель уменьшается, таким образом, уменьшая потери энергии. Шум, который производит трансформатор при работе, является следствием именно такого конструктивного решения.

Видео: вихревые токи Фуко

Еще один интересный использования вихревой волны – применение их в электросчетчиках или медицине. В нижней части каждого счетчика расположен тонкий алюминиевый диск, который всегда вращается. Это диск движется в магнитном поле, так что там всегда есть вихревых токи, цель которых замедлить движения диска. Благодаря этому датчик работает точно и без перепадов.

Закон электромагнитной индукции. Вихревое электрическое поле. Вихревые токи

Подробности Электрический ток в цепи возможен, если на свободные заряды проводника действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура называется ЭДС. При изменении магнитного потока через поверхность, ограниченную контуром, в контуре появляются сторонние силы, действие которых характеризуется ЭДС индукции.
Учитывая направление индукционного тока, согласно правилу Ленца:

ЭДС индукции в замкнутом контуре равна скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой с противоположным знаком.

Почему? — т.к. индукционный ток противодействует изменению магнитного потока, ЭДС индукции и скорость изменения магнитного потока имеют разные знаки.

Если рассматривать не единичный контур, а катушку, где N- число витков в катушке:

Величину индукционного тока можно рассчитать по закону Ома для замкнутой цепи

где R — сопротивление проводника.

ВИХРЕВОЕ ЭЛЕКТРИЧЕСКОЕ ПОЛЕ

Причина возникновения электрического тока в неподвижном проводнике — электрическое поле. Всякое изменение магнитного поля порождает индукционное электрическое поле независимо от наличия или отсутствия замкнутого контура, при этом если проводник разомкнут, то на его концах возникает разность потенциалов; если проводник замкнут, то в нем наблюдается индукционный ток.

Индукционное электрическое поле является вихревым. Направление силовых линий вихревого электрического поля совпадает с направлением индукционного тока Индукционное электрическое поле имеет совершенно другие свойства в отличии от электростатического поля.

Электростатическое поле — создается неподвижными электрическими зарядами, силовые линии поля разомкнуты — -потенциальное поле, источниками поля являются электрические заряды, работа сил поля по перемещению пробного заряда по замкнутому пути равна 0

Индукционное электрическое поле ( вихревое электр. поле ) — вызывается изменениями магнитного поля, силовые линии замкнуты (вихревое поле), источники поля указать нельзя, работа сил поля по перемещению пробного заряда по замкнутому пути равна ЭДС индукции.

Вихревые токи

Индукционные токи в массивных проводниках называют токами Фуко. Токи Фуко могут достигать очень больших значений, т.к. сопротивление массивных проводников мало. Поэтому сердечники трансформаторов делают из изолированных пластин. В ферритах — магнитных изоляторах вихревые токи практически не возникают.

Использование вихревых токов

— нагрев и плавка металлов в вакууме, демпферы в электроизмерительных приборах.

Вредное действие вихревых токов

— это потери энергии в сердечниках трансформаторов и генераторов из-за выделения большого количества тепла.

Следующая страница «ЭДС индукции в движущихся проводниках»

Назад в раздел «10-11 класс»

Электромагнитное поле — Класс!ная физика

Взаимодействие токов. Магнитное поле. Вектор магнитной индукции. Сила Ампера — Действие магнитного поля на движущийся заряд.Магнитные свойства вещества — Явление электромагнитной индукции. Магнитный поток. Направление индукционного тока. Правило Ленца — ЭДС электромагнитной индукции. Вихревое электрическое поле — ЭДС индукции в движущихся проводниках — Самоиндукция. Индуктивность. Энергия магнитного поля. Вопросы к пр/работе

( 2 оценки, среднее 5 из 5 )

Источник

Каждый человек, который изучает электродинамику и другие разделы науки об электричестве, сталкивается с таким понятием, как вихревые токи. Что это такое, какие есть свойства вихревых токов, как определить их в трансформаторе? Об этом и другом далее.

Суть явления

Вихревые или токи фуко — это те, которые протекают из-за воздействия переменного магнитного поля. При этом изменяется не само поле, а проводниковое положение данного поля. То есть если будет происходить проводниковое перемещение статичного поля, то в нем все равно будет образовываться энергия.

Вихревые токи вредные и полезные действияТоки Фуко

Фуко возникают там, где изменяется переменное магнитное поля и фактически они ничем не отличаются от энергии, идущей по проводам, или вторичных электрических трансформаторных обмотков.

Вихревые токи вредные и полезные действияОпределение из учебного пособия

Свойства вихревых токов

Стоит отметить, что вихревая энергия не отличается от индукционной проводной. По направлению и силе Фуко зависит от металлического проводникового элемента, от того, в каком направлении идет переменный магнитный поток, какие имеет свойства металл и как изменяется магнитный поток. При этом токовое распределение очень сложное.

В проводниковых объектах, имеющих габаритные объемы, токи бывают большими, из-за чего значительно повышается температура тела.

Токовая энергия способна создавать нагревание проводника для индукционной печи и металлического плавления. Подобно другим индукционным разновидностям, Фуко взаимодействуют с первичным магнитным полем и тормозят индуктивное движение.

Вихревые токи вредные и полезные действияНагревание как одно из свойств

Полезное и вредное действие

Имеют токи фуко полезное и вредное действие. Они нагревают и плавят металлы в области вакуума и демпфера, но в то же время происходят энергопотери в области трансформаторных сердечников и генераторов из-за того, что выделяется большое количество тепла.

Вихревые токи вредные и полезные действияПолезное действие индукционных токов

Как определить в трансформаторе

Узнать, где находятся вихревые токи в трансформаторе, несложно. Как правило, они располагаются в трансформаторных сердечниках. Когда замыкаются в сердечниках, то нагревают их и создают энергию. Поскольку появляются в плоскостях, которые перпендикулярны магнитному потоку по характеристике, происходит трансформаторное уменьшение сердечников.

Обратите внимание! Для их измерения используются изолированные стальные пластины.

Вихревые токи вредные и полезные действияОпределение в трансформаторе

Применение

Нашли вихревые токи применение в электромагнитной индукции. Они используются для того, чтобы тормозить вращающиеся массивные детали. Благодаря магнитоиндукционному торможению они также применяются, чтобы успокоить подвижные части электроизмерительных приборов, в частности, чтобы создать противодействующий момент и притормозить подвижную часть электросчетчиков.

Также используются они в магнитном тормозном диске на электрическом счетчике. В ряде случаев применяются в технологических операциях, которые невозможны без применения высоких частот. К примеру, при откачке воздуха из вакуумных приборов и баллонов с газом. Кроме того, они нужны, чтобы полностью обезгаживать арматуру в высокочастотном генераторе.

Вихревые токи вредные и полезные действияПрименение в проводниках

Способы уменьшения блуждающих токов

Чтобы уменьшить блуждающие фуковые токи, нужно максимальным образом сделать увеличение сопротивления на токовом пути с помощью заполнения дистиллированной водой циркуляционной системы и встраивания изоляционных шлангов трубопроводов у теплового обменника и вентиля.

Стоит отметить, что нахождение их в электромашинах нежелательно из-за нагрева сердечников и создания энергопотери, поскольку по закону Леннца они размагничивают эти устройства. Чтобы уменьшить их вредное воздействие, используется несколько методов.

Так сердечники машин делают из стали и изолируют друг от друга при помощи лаковой пленки, окалины и прочих материалов. Благодаря этому они не распространяются. Кроме того, поперечный вид сечения на каждом отдельном проводнике уменьшает токовую силу.

В некоторых приборах в качестве сердечников используются катушки с отожженой железной проволокой. При этом полоски на них идут параллельно тем линиям, которые расположены на магнитном потоке.

Обратите внимание! Ограничение вихревой энергии происходит изолирующими прокладками, то есть жгуты состоят из отдельных жил, изолированных между собой.

Вихревые токи вредные и полезные действияУменьшение токовой силы

Возможные проблемы

Вихревые виды проводят энергию и рассеивают ее, выделяя джоулевую теплоту. Такая энергия ротора асинхронной двигательной установки готовится из фурромагнетиков и способствует нагреву сердечников.

Чтобы бороться с подобным явлением, сердечники создаются из тонкой стали, покрываются изоляцией и устанавливаются поперек пластин. Если пластины имеют небольшую толщину, они обладают малой объемной плотностью. Благодаря ферритам и веществам, имеющим большое магнитосопротивление, сердечники делаются сплошными. Направление их ослабляет энергию внутри провода.

В результате он неравномерный. Это явление скин-эффекта или поверхностного эффекта, из-за которого внутренний проводник бесполезен, и в цепях, где есть большая частота, используются проводниковые трубки.

Обратите внимание! Скин-эффект применяется для того, чтобы разогревать поверхностный металл для металлической закалки. При этом закалка может быть проведена на любой глубине.

Вихревые токи вредные и полезные действияПроблемы, вызванные индукционными токами

Фуко являются индукционными токами, которые возникают в крупных проводниках сплошного типа. Обозначаются буквой ф. Они имеют свойство нагрева проводников. В результате чего они чаще используются в индукционного типа печах. Важно отметить, что способны генерировать магнитное поле. В этом механизм их работы. В некоторых случаях они полезны, в других нежелательны. В любом случае они используются во многих устройствах.

Источник