В ходе какой реакции высвобождантся полезная для клетки энергия

Универсальным источником энергии во всех клетках служит АТФ (аденозинтрифосфат, или аденозинтрифосфорная кислота).
Все энергетические затраты любой клетки обеспечиваются за счёт универсального энергетического вещества — АТФ.
АТФ синтезируется в результате реакции фосфорилирования, то есть присоединения одного остатка фосфорной кислоты к молекуле АДФ (аденозиндифосфата):
АДФ + H3PO4+ 40 кДж = АТФ + H2O.
Энергия запасается в форме энергии химических связей АТФ. Химические связи АТФ, при разрыве которых выделяется много энергии, называются макроэргическими.
При распаде АТФ до АДФ клетка за счёт разрыва макроэргической связи получит приблизительно (40) кДж энергии.
Энергия для синтеза АТФ из АДФ выделяется в процессе диссимиляции.
Энергетический обмен (диссимиляция, катаболизм) — это совокупность химических реакций постепенного распада органических соединений, сопровождающихся высвобождением энергии, часть которой расходуется на синтез АТФ.
В зависимости от среды обитания организма, диссимиляция может проходить в два или в три этапа.
Процессы расщепления органических соединений у аэробных организмов происходят в три этапа: подготовительный, бескислородный и кислородный.
В результате этого органические вещества распадаются до простейших неорганических соединений.
У анаэробных организмов, обитающих в бескислородной среде и не нуждающихся в кислороде (а также у аэробных организмов при недостатке кислорода), диссимиляция происходит в два этапа: подготовительный и бескислородный.
В двухэтапном энергетическом обмене энергии запасается гораздо меньше, чем в трёхэтапном.
Первый этап — подготовительный
Подготовительный этап заключается в распаде крупных органических молекул до более простых: полисахаридов — до моносахаридов, липидов — до глицерина и жирных кислот, белков — до аминокислот.
Этот процесс называется пищеварением. У многоклеточных организмов он осуществляется в желудочно-кишечном тракте с помощью пищеварительных ферментов. У одноклеточных организмов — происходит под действием ферментов лизосом.
В ходе биохимических реакций, происходящих на этом этапе, энергии выделяется мало, она рассеивается в виде тепла, и АТФ не образуется.
Второй этап — бескислородный (гликолиз)
Второй (бескислородный) этап заключается в ферментативном расщеплении органических веществ, которые были получены в ходе подготовительного этапа. Кислород в реакциях этого этапа не участвует.
Биологический смысл второго этапа заключается в начале постепенного расщепления и окисления глюкозы с накоплением энергии в виде (2) молекул АТФ.
Процесс бескислородного расщепления глюкозы называется гликолиз.
Гликолиз происходит в цитоплазме клеток.
Он состоит из нескольких последовательных реакций превращения молекулы глюкозы C6H12O6 в две молекулы пировиноградной кислоты — ПВК C3H4O3 и две молекулы АТФ (в виде которой запасается примерно (40) % энергии, выделившейся при гликолизе). Остальная энергия (около (60) %) рассеивается в виде тепла.
C6H12O6+2H3PO4+2АДФ=2C3H4O3+2АТФ +2H2O.
Получившаяся пировиноградная кислота при недостатке кислорода в клетках животных, а также клетках многих грибов и микроорганизмов, превращается в молочную кислоту C3H6O3.
HOOC−CO−CH3пировиноградная кислота→НАД⋅H+H+лактатдегидрогеназаHOOC−CHOH−CH3молочная кислота.
В мышцах человека при больших нагрузках и нехватке кислорода образуется молочная кислота и появляется боль. У нетренированных людей это происходит быстрее, чем у людей тренированных.
При недостатке кислорода в клетках растений, а также в клетках некоторых грибов (например, дрожжей), вместо гликолиза происходит спиртовое брожение: пировиноградная кислота распадается на этиловый спирт C2H5OH и углекислый газ CO2:
C6H12O6+2H3PO4+2АДФ=2C2H5OH+2CO2+2АТФ+2H2O.
Третий этап — кислородный
В результате гликолиза глюкоза распадается не до конечных продуктов (CO2 и H2O), а до богатых энергией соединений (молочная кислота, этиловый спирт) которые, окисляясь дальше, могут дать её в больших количествах. Поэтому у аэробных организмов после гликолиза (или спиртового брожения) следует третий, завершающий этап энергетического обмена — полное кислородное расщепление, или клеточное дыхание.
Этот этап происходит на кристах митохондрий.
Третий этап, так же как и гликолиз, является многостадийным и состоит из двух последовательных процессов — цикла Кребса и окислительного фосфорилирования.
Третий (кислородный) этап заключается в том, что при кислородном дыхании ПВК окисляется до окончательных продуктов — углекислого газа и воды, а энергия, выделяющаяся при окислении, запасается в виде (36) молекул АТФ ((2) молекулы в цикле Кребса и (34) молекулы в ходе окислительного фосфорилирования).
Этот этап можно представить себе в следующем виде:
2C3H4O3+6O2+36H3PO4+36АДФ=6CO2+42H2O+36АТФ.
Вспомним, что ещё две молекулы АТФ запасаются в ходе бескислородного расщепления каждой молекулы глюкозы (на втором, бескислородном, этапе). Таким образом, в результате полного расщепления одной молекулы глюкозы образуется (38) молекул АТФ.
Суммарная реакция энергетического обмена:
C6H12O6+6O2=6CO2+6H2O+38АТФ.
Для получения энергии в клетках, кроме глюкозы, могут быть использованы и другие вещества: липиды, белки. Однако ведущая роль в энергетическом обмене у большинства организмов принадлежит сахарам.
Источники:
Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. 9 класс // ДРОФА.
Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. Общая биология (базовый уровень) 10–11 класс // ДРОФА.
Лернер Г. И. Биология: Полный справочник для подготовки к ЕГЭ: АСТ, Астрель.
Источник
Всем привет! Эту статью я хотел посвятить клеточному ядру и ДНК. Но перед этим нужно затронуть то, как клетка хранит и использует энергию (спасибо spidgorny). Мы будем касаться вопросов связанных с энергией почти везде. Давайте заранее в них разберемся.
Из чего можно получать энергию? Да из всего! Растения используют световую энергию. Некоторые бактерии тоже. То есть органические вещества синтезируются из неорганических за счет световой энергии. + Есть хемотрофы. Они синтезируют органические вещества из неорганических за счет энергии окисления аммиака, сероводорода и др. веществ. А есть мы с вами. Мы — гетеротрофы. Кто это такие? Это те, кто не умеет синтезировать органические вещества из неорганических. То есть хемосинтез и фотосинтез, это не для нас. Мы берем готовую органику (съедаем). Разбираем ее на кусочки и либо используем, как строительный материал, либо разрушаем для получения энергии.
Что конкретно мы можем разбирать на энергию? Белки (сначала разбирая их на аминокислоты), жиры, углеводы и этиловый спирт (но это по желанию). То есть все эти вещества могут быть использованы, как источники энергии. Но для ее хранения мы используем жиры и углеводы. Обожаю углеводы! В нашем теле основным запасающим углеводом является гликоген.
Он состоит из остатков глюкозы. То есть это длинная, разветвленная цепочка, состоящая из одинаковых звеньев (глюкозы). При необходимости в энергии мы отщепляем по одному кусочку с конца цепи и окисляя его получаем энергию. Такой способ получения энергии характерен для всех клеток тела, но особенно много гликогена в клетках печени и мышечной ткани.
Теперь поговорим о жире. Он хранится в специальных клетках соединительной ткани. Имя им — адипоциты. По сути это клетки с огромной жировой каплей внутри.
При необходимости, организм достает жир из этих клеток, частично расщепляет и транспортирует. По месту доставки происходит окончательное расщепление с выделением и преобразованием энергии.
Довольно популярный вопрос: «Почему нельзя хранить всю энергию в виде жира, или гликогена?»
У этих источников энергии разное назначение. Из гликогена энергию можно получить довольно быстро. Его расщепление начинается почти сразу после начала мышечной работы, достигая пика к 1-2 минуте. Расщепление жиров протекает на несколько порядков медленней. То есть если вы спите, или медленно куда-то идете — у вас постоянный расход энергии, и его можно обеспечить расщепляя жиры. Но как только вы решите ускориться (упали сервера, побежали поднимать), резко потребуются много энергии и быстро ее получить расщепляя жиры не получится. Тут нам и нужен гликоген.
Есть еще одно важное различие. Гликоген связывает много воды. Примерно 3 г воды на 1 г гликогена. То есть, для 1 кг гликогена это уже 3 кг воды. Не оптимально… С жиром проще. Молекулы липидов (жиры=липиды), в которых запасается энергия не заряжены, в отличие от молекул воды и гликогена. Такие молекулы называется гидрофобными (дословно, боящимися воды). Молекулы воды же поляризованы. Примерно так это выглядит.
По сути, положительно заряженные атомы водорода взаимодействуют с отрицательно заряженными атомами кислорода. Получается стабильное и энергетически выгодное состояние.
Теперь представим молекулы липидов. Они не заряжены и не могут нормально взаимодействовать с поляризованными молекулами воды. Поэтому смесь липидов с водой энергетически невыгодна. Молекулы липидов не способны адсорбировать воду, как это делает гликоген. Они «кучкуются» в так называемые липидные капли, окружаются мембраной из фосфолипидов (одна их сторона заряжена и обращена к воде снаружи, вторая — не заряжена и смотрит на липиды капли). В итоге, у нас есть стабильная система, эффективно хранящая липиды и ничего лишнего.
Окей, мы разобрались с тем, в каких формах хранится энергия. А что с ней происходит дальше? Вот отщепили мы молекулу глюкозы от гликогена. Превратили ее в энергию. Что это значит?
Сделаем небольшое отступление.
В клетке происходит порядка 1.000.000.000 реакций каждую секунду. При протекании реакции одно вещество трансформируется в другое. Что при этом происходит с его внутренней энергией? Она может уменьшаться, увеличиваться или не меняться. Если она уменьшается -> происходит выделение энергии. Если увеличивается -> нужно взять энергию из вне. Организм обычно совмещает такие реакции. То есть энергия, выделившаяся при протекании одной реакции идет на проведение второй.
Так вот в организме есть специальные соединения, макроэрги, которые способны накапливать и передавать энергию в ходе реакции. В их составе есть одна, или несколько химических связей, в которых и накапливается эта энергия. Теперь можно вернуться к глюкозе. Энергия выделившаяся при ее распаде запасется в связях этих макроэргов.
Разберем на примере.
Самым распространенным макроэргом (энергетической валютой) клетки является АТФ (Аденозинтрифосфат).
Выглядит примерно так.
В его состав входит азотистое основание аденин (одно из 4, используемых для кодирования информации в ДНК), сахар рибоза и три остатка фосфорной кислоты (поэтому и АденозинТРИфосфат). Именно в связях между остатками фосфорной кислоты накапливается энергия. При отщеплении одного остатка фосфорной кислоты образуется АДФ (АденозинДИфосфат). АДФ может выделять энергию, отрывая еще один остаток и превращаясь в АМФ (АденозинМОНОфосфат). Но эффективность отщепленная второго остатка намного ниже. Поэтому, обычно, организм стремится из АДФ снова получить АТФ. Происходит это примерно так. При распаде глюкозы, выделяющаяся энергия тратится на образование связи между двумя остатками фосфорной кислоты и образование ATP. Процесс многостадийный и пока мы его опустим.
Получившийся АТФ является универсальным источником энергии. Он используется везде, начиная от синтеза белка (для соединения аминокислот нужна энергия), заканчивая мышечной работой. Моторные белки, осуществляющие мышечное сокращение используют энергию, запасенную в АТФ, для изменения своей конформации. Изменение конформации это переориентация одной части большой молекулы относительно другой. Выглядит примерно так.
То есть химическая энергия связи переходит в механическую энергию. Вот реальные примеры белков, использующих АТФ для осуществления работы.
Знакомьтесь, это миозин. Моторный белок. Он осуществляет перемещение крупных внутриклеточных образований и участвует в сокращении мышц. Обратите внимание, у него имеется две «ножки». Используя энергию запасенную в 1 молекуле АТФ он осуществляет одно конформационное изменение, по сути один шаг. Самый наглядный пример перехода химической энергии АТФ в механическую.
Второй пример — Na/K насос. На первом этапе он связывает три молекулы Na и одну АТФ. Используя энергию АТФ, он меняет конформацию, выбрасывая Na из клетки. Затем он связывает две молекулы калия и, возвращаясь к исходной конформации, переносит калий в клетку. Штука крайне важная, позволяет поддерживать уровень внутриклеточного Na в норме.
А если серьезно, то:
Пауза. Зачем нам АТФ? Почему мы не можем использовать запасенную в глюкозе энергию напрямую? Банально, если окислить глюкозу до CO2 за один раз, мгновенно выделится экстремально много энергии. И большая ее часть рассеется в виде тепла. Поэтому реакция разбивается на стадии. На каждой выделяется немного энергии, она запасается, и реакция продолжается пока вещество полностью не окислиться.
Подитожу. Запасается энергия в жирах и углеводах. Из углеводов ее можно извлечь быстрее, но в жирах можно запасти больше. Для проведения реакций клетка использует высокоэнергетические соединения, в которых запасается энергия распада жиров, углеводов и тд… АТФ — основное такое соединение в клетке. По сути, бери и используй. Однако не единственное. Но об этом позже.
P.S. Я попытался максимально упростить материал, поэтому появились некоторые неточности. Прошу ревностных биологов меня простить.
Источник
Конспект на интерактивный видео-урок
по предмету «Естествознание» для «10» класса
Урок № 24.Энергетика живой клетки
Перечень вопросов, рассматриваемых в теме:
- Как энергия запасается в клетке;
- Что такое метаболизм;
- В чем суть процессов гликолиза, брожения и клеточного дыхания;
- Какие процессы проходят на световой и темновой фазах фотосинтеза;
- Как связаны процессы энергетического и пластического обмена;
- Что представляет собой хемосинтез.
Глоссарий по теме:
Метаболизм (обмен веществ) – сложная цепь превращений веществ в организме начиная с момента их поступления из внешней среды и кончая удалением продуктов распада. Представляет собой совокупность процессов энергетического обмена (катаболизма диссимиляции) и пластического обмена (анаболизма, ассимиляции).
Энергетический обмен – это совокупность химических реакций постепенного распада органических соединений, сопровождающихся высвобождением энергии, часть которой расходуется на синтез АТФ. Синтезированная АТФ становится универсальным источником энергии для жизнедеятельности организмов. Значение энергетического обмена – снабжение клетки энергией, которая необходима для жизнедеятельности.
Пластический обмен – это совокупность химических реакций образования (синтеза) из простых веществ с затратой энергии более сложные. Непосредственным поставщиком энергии в клетках выступает АТФ.
Фотосинтез – процесс образования органических веществ из неорганических (углекислого газа и воды) с использованием солнечной энергии. Проходит в два этапа: световая фаза (происходит улавливание и фиксация энергии света в АТФ) и темновая (связывание углекислого газа в молекулы глюкозы с затратой энергии АТФ).
Хемосинтез – процесс образования органических веществ из неорганических (углекислого газа и воды) с использованием энергии окисления неорганических веществ. Например, такой тип питания используют азотфиксирующие бактерии.
Клеточное или тканевое дыхание — совокупность биохимических реакций, протекающих в клетках живых организмов, в ходе которых происходит окисление углеводов, липидов и аминокислот до углекислого газа и воды.
Основная и дополнительная литература по теме урока :
Естествознание. 10 класс [Текст]: учебник для общеобразоват. организаций: базовый уровень / И.Ю. Алексашина, К.В. Галактионов, И.С. Дмитриев, А.В. Ляпцев и др. / под ред. И.Ю. Алексашиной. – 3-е изд., испр. – М.: Просвещение, 2017.: с 115 – 118.
Электронные ресурсы:
Обмен веществ. Портал открытая биология // Электронный доступ: https://biology.ru/textbook/content.html
АТФ и её роль в клетке .Проект «вся биология» // Электронный доступ: https://www.sbio.info/materials/obbiology/obbkletka/stroenorg/12
Энергетика живой клетки. Научно-познавательный журнал «Познавайка» // Электронный доступ: https://www.poznavayka.org/biologiya/energiya-zhivoy-kletki/
Энергетика живой клетки. Журнал «В МИРЕ НАУКИ» №3, 2006 . БИОЛОГИЯ // электронный доступ: https://elementy.ru/nauchno-populyarnaya_biblioteka/430308/430310?SSL=1
Теоретический материал для самостоятельного изучения
Обязательным условием существования биологических систем являются потоки энергии. В этом заключается ключевое различие между живой и неживой природой. Энергия не хранится в клетке, а поступает извне. Ключевую роль в трансформации энергии обеспечивает клетка, как элементарная структура живого. Специальные биохимические механизмы трансформируют одни виды энергии в другие, для обеспечения необходимых функций клетки.
Основным источником энергии для всех живых существ планеты Земля, является энергия Солнца. Однако эта энергия может быть использована живым только после того, как она будет усвоена фотоавтотрофами (от греч. «фото» – свет, «авто» – сам, «трофос» – питание).
В процессе эволюции появились и другие организмы, которые научились потреблять готовые органические соединения для получения запасённой в них энергии – гетеротрофы (от греч. «гетерос» – другой, «трофос» – питание).
Некоторые виды микроорганизмов (хемоавтотрофы) приобрели способность к использованию энергии, выделяемой при окислении неорганических веществ.
Таким образом, из всего многообразия существующих форм энергии живые существа на нашей планете используют только две – световую и энергию химических связей.
Главный переносчик энергии в клетке
Световая энергия Солнца и энергия, заключённая в потребляемой пище, запасаются в особых бимолекулярных аккумуляторах – молекулах АТФ (аденозинтрифосфат). В молекулах АТФ энергия запасается в виде высокоэнергетических химических связях между остатками фосфорной кислоты, которая освобождается при отщеплении фосфата: АТФ → АДФ + Ф + E.
Выделяемая энергия используется клетками для процессов выработки тепла, мышечных сокращений (мышечная клетка), для проведения нервного импульса (нервные клетки) и т.п.
Обратный процесс образования АТФ с затратой энергии, получил название энергетический обмен.
Синтез макромолекул важнейших органических соединений, необходимых для построения структур клетки, обеспечения всех процессов жизнедеятельности клеток – пластический обмен – обеспечивается также энергией АТФ.
Независимо от типа питания, универсальным аккумулятором энергии живых организмов выступают молекулы АТФ, где добытая энергия извне запасается в виде химических связей. Такая схожесть иллюстрирует единство происхождения всего живого.
Метаболизм
Поступившие вместе с пищей (или в результате фотосинтеза) органические вещества расщепляются на более простые (катаболизм или диссимиляция), которые служат для постройки макромолекул органических соединений (анаболизм или ассимиляция). Эти процессы происходят в организме одновременно. Совокупность этих процессов получила название – метаболизм. В результате его организм осуществляет обмен веществом и энергией с окружающей средой. Наибольшее значение для энергетического обмена являются многостадийные реакции расщепления глюкозы.
На стадии гликолиза в цитоплазме клетки происходит ферментативное расщепление молекулы глюкозы с образованием более простой пировиноградной кислоты и молекул АТФ: С6Н12О6 + 2 АДФ + 2 Ф → 2С3Н4О3 + 4Н+ + 2АТФ
Молекулы пировиноградной кислоты обладают значительной энергией, высвобождение которой происходит в митохондриях. В ходе так называемого клеточного дыхания (аэробного расщепления), вещество распадается на углекислый газ, который впоследствии выделяется из клетки и воду. По последним исследованиям, при этом образуется 30 молекул АТФ.
Суммарную реакцию окисления глюкозы можно представить следующим образом:
С6Н12О6 + 6О2 + 6Н2О + 32 АДФ + 32 Ф → 6 СО2 + 12 Н2О + 32АТФ
Некоторые микроорганизмы при недостатке кислорода расщепляют глюкозу в процессе анаэробного дыхания или брожения. В зависимости от конечных продуктов такого расцепления различают спиртовое брожение (с образование этанола), молочнокислое (молочная кислота). Последнее происходит и в мышцах, при недостатке кислорода, например во время длительной тренировки. Энергетический выход такого типа расщепления менее энергоэффективен.
Основным источником энергии для организмов является окисление глюкозы в митохондриях. При этом также может происходить окисление других органических соединений (белков, жиров), потребляемых, например, вместе с пищей.
Фотосинтез
Фотоавтотрофы имеют уникальные ферментативные системы, способные трансформировать энергию солнечного света в энергию химической связи. Процесс образования органических веществ из неорганических (углекислого газа и воды) с использованием солнечной энергии получил название фотосинтез. В растениях фотосинтезирующие комплексы сосредоточены в специальных органеллах – хлоропластах. Основной пигмент – хлорофилл – выполняет функцию световых «антенн», улавливая световые волны практически всех диапазонов, кроме зелёного. Стоит отметить, что это обуславливает окраску листьев растений.
В так называемой, световой фазе, кванты света выбивают электроны из молекулы хлорофилла, и он начинает передаваться по специальным белковым переносчикам, расположенных на мембране хлоропластов. Под действием света одновременно происходит разложение воды (фотолиз). В реакции высвобождается, в том числе катион водорода (Н+), необходимый для последующего биосинтеза, который захватывает молекула НАДФ (никотинамидадениндинуклеотидфосфат): НАДФ+ + Н+→НАДФ∙Н
Энергия возбуждённого электрона заряжает известный нам биологический катализатор АТФ и молекулу НАДФ – в этом заключается биологический смысл световой фазы фотосинтеза.
Заметим, что побочными продуктами фотолиза воды становятся свободный кислород и свободные электроны, восстанавливающие хлорофилл: 2Н2О→ Н+ + 4е- + О2
Дальнейший процесс может уже проходить без света. Сущность реакций темновой фазы можно выразить следующим уравнением: СО2 + НАДФ∙Н + АТФ = С6Н12О6 +АДФ + НАДФ+
Не сложно заметить, что выделяются вещества необходимые на начальном этапе фотосинтеза, что замыкает цикл. Энергия молекулярных аккумуляторов была использована для фиксации углекислого газа в энергию химических связей углевода.
Фотосинтез, таким образом, является процессом превращения одной (световой) формы энергии в другую(химическую). Вся энергия биосферы запускается благодаря этому процессу. Другими словами, фотосинтез является отражением космических потоков энергии. Помимо этого, фотосинтезирующие организмы не только обеспечивают первичный синтез органических соединений, но и создают условия необходимые для существования других живых организмов.
Взаимосвязь энергетического и пластического обмена
Не сложно заметить, что процессы аккумулирования энергии в молекулах АТФ (энергетический обмен) и использование запасённой энергии для синтеза необходимых веществ (белков, жиров, углеводов, нуклеиновых кислот) неразрывно связаны. Так синтез АТФ не возможен без разложения органических веществ, а синтез веществ клетки не возможен без энергии АТФ. Причём, заметим, что и фотосинтез представляет собой единство этих процессов: темновая фаза – пластический обмен, световая фаза – энергетический.
Оба процесса протекают одновременно и неотделимы друг от друга, обеспечивая жизнедеятельность организма. Таким образом, в клетках происходит трансформация вещества и энергии, которые лежат в основе существования жизни и непрерывного самообновления. Сходство процессов энергетического обмена в клетках всех живых организмов является доказательством единства их происхождения.
Вывод
В клетках происходят одновременно процессы энергетического и пластического обмена, это лежит в основе сохранения жизни. Взаимообмен энергией и веществом между живой и неживой природой является иллюстрацией принципа единства и взаимосвязи материального мира.
Примеры и разбор решения заданий тренировочного модуля:
Задание 1. Выберите один ответ:
- Универсальным аккумулятором энергии в клетке является:
- Жиры;
- Белки;
- АТФ;
- НАДФ∙Н.
Ответ: АТФ
Пояснение: универсальной «разменной валютой» в энергетике живой клетки выступает АТФ. При его распаде выделяется энергия, которая расходуется на все жизненно важные процессы.
Задание 2. Исправьте ошибки, анализируя текст с позиции энергетического обмена:
В рационе питания человека помимо белков растительных и животных не обязательно должны присутствовать углеводы и жиры. Отсутствие жиров в пище не приводит к истощению. Человек толстеет, если употребляет в пищу избыточное количество углеводов. На сое и рисе можно прожить.
Ответ: В рационе питания человека помимо белков растительных и животных не обязательно должны присутствовать углеводы и жиры. Отсутствие жиров в пище не приводит к истощению. Человек толстеет, если употребляет в пищу много жиров. Исключительно на сое и рисе можно благополучно прожить.
Пояснение: с точки зрения энергетического обмена, наиболее энергоэффективными являются жиры. При этом, жиры, поступающие с пищей, используются в том числе, для построения многих важных соединений, например гормонов. «Быстрая» энергия углеводов в избыточном количестве может приводить к полноте. Употребление только растительного белка в пищу, по сравнению с животным, является менее энергоэффективным и при отсутствии других источников энергии может приводить к истощению организма.
Источник