Термодинамические процессы при обогащении полезных ископаемых

Термодинамические процессы при обогащении полезных ископаемых thumbnail

Горнодобывающая промышленность никогда не обходится без такого метода обработки полезных ископаемых, как обогащение. Это процесс, при котором концентрация ценного сырья в добытой породе увеличивается, что повышает эффективность его использования. Например, железная руда представляет собой комплекс минералов, содержание железа в которых может колебаться от 10 до 60%.

Чтобы очистить сырье от примесей и прибегают к процессу обогащения, после которого эти цифры увеличиваются до 70-90%. Это первичная обработка твердых полезных ископаемых. Прежде чем приступить к нему, руду необходимо подготовить. В зависимости от вида сырья, его дробят, обжигают и промывают. Дальнейшее производство зависит от физико-химических свойств.

Основы обогащения полезных ископаемых

Исходя из минерального состава сырья, которое требует обогащения, существует большое количество способов его очищения. Принцип действия заключается в разделении ценной породы и пустой, благодаря чему концентрация полезного вещества в переработанном материале значительно повышается.

Обогащение полезных ископаемых в горнодобывающей промышленности

Есть несколько видов обогащения:

  • электрическое,
  • гравитационное,
  • магнитное,
  • радиологическое
  • химическое.

Его выбор зависит от плотности материала, его магнитной или электрической восприимчивости, адсорбционной способности, химического состава, агрегатного состояния и кристалло-химической структуры. Также влияет и уровень взаимодействия пустой и ценной породы, насколько сильна их связь. Часто возникают случаи комбинирования этих методов, для повышения эффективности работы. Обогащение может проводиться в несколько этапов, когда в пустой породе остаются маленькие частички полезного ископаемого.

Первое промышленное применение обогащения сырья датируется 1700 годом, когда для добычи золота, оно размачивалось и фильтровалось. Но различные методы существовали в примитивном виде еще до нашей эры.

Гравитационное разделение

Основа обогащения полезных ископаемых этого типа лежит в распределении материалов по плотности, относительно среды, в которую помещается взвесь. Самым распространенным в горнодобывающей промышленности является применение гидравлического прибора. Пласт полезных ископаемых постепенно поддается воздействию турбулентного потока жидкости. В результате этого, минералы разрыхляются и разделяются в зависимости от плотности.

Обогащение полезных ископаемых в горнодобывающей промышленности

1 – бункер; 2 – питатель; 3 – грохот; 4 – конвейер; 5 – дробилка; 6 – конвейерные весы; 7 – отсадочные машины; 8, 9, 10 – спиральный, гидравлический, реечный классификаторы; 11 – гидроциклон; 12 – концентрационный стол; 13 – сгуститель; 14 – мельница; 15 – контактный чан; 16 – флотационная машина”> Pис. 1. Cхема обогащения оловянной руды c предварительной гидравлической классификацией: 1 – бункер; 2 – питатель; 3 – грохот; 4 – конвейер; 5 – дробилка; 6 – конвейерные весы; 7 – отсадочные машины; 8, 9, 10 – спиральный, гидравлический, реечный классификаторы; 11 – гидроциклон; 12 – концентрационный стол; 13 – сгуститель; 14 – мельница; 15 – контактный чан; 16 – флотационная машина.

Легкая фракция быстро поднимается на поверхность, а в дальнейшем собирается. Этот процесс не позволяет достигнуть высокой точности сепарации, поэтому сейчас частота его применения снизилась. Преимущество гравитационного обогащения в его себестоимости – она достаточно низкая. Но, из-за использования воды, он может стать причиной неблагоприятной экологической ситуации.

Гравитационное обогащение применяется почти для каждого вида переработки полезных ископаемых. Предварительно необходимо провести несколько подготовительных этапов. Например, дробление сырья в грохотах, благодаря чему можно отделить небольшое количество пустой породы. Применяется и вымачивание, опрыскивание, обжигание. Это значительно увеличивает его эффективность.

Тяжелые среды

Самым простым является обогащение в тяжелых средах, где нет потока жидкости, а разделение происходит под воздействием гравитации. Легкие частицы отделяются от тяжелых на несколько фракций. В качестве жидкостей может выступать раствор хлоридов кальция или цинка, органические смеси.

Обогащение полезных ископаемых в горнодобывающей промышленности

Концентрационные столы

Эталоном гравитационного разделения полезных ископаемых является обогащение на концентрационных столах. Первое упоминание об этом методе можно найти еще в трудах Геродота, который описывал древне-грецкие способы добычи золота. Установка представляет собой стол с выточенными горизонтальными желобами (рифлями), наклоненный под углом 1-10 градусов. Сверху подается напор суспензии, жидкости с дробленым полезным ископаемым. Под воздействием силы тяжести, частички оседают в желобах, а пустая порода остается в потоке. Недостаток этого способа в том, что для эффективного разделения сырья, руду необходимо раздробить до 0,1-13 мм. В противном случае большое количество пустой породы попадет в отсадку.

Обогащение полезных ископаемых в горнодобывающей промышленности

Сепарация на шлюзах

Для обогащения рассыпных руд (золота, вольфрама, олова и других редких металлов), используют сепарацию на шлюзах. Для разделения используется специальный материал с шероховатым покрытием – трафарет, в котором и задерживается ценное сырье. Жидкость может подаваться на ступенчатую и желобную ровную конструкцию, в зависимости от вида полезного ископаемого.

Обогащение полезных ископаемых в горнодобывающей промышленности

Интересно, что этот вид обогащения появился очень давно, и стал причиной появления легенды о золотом руно. В древности шкуры молодых овец смазывали жиром, и укладывали на дно желобов, куда подавалась суспензия золотоносного песка. Ценный металл задерживался в ворсинках, а жир не позволял ему двигаться вместе с потоком.

Читайте также:  Почему полезно есть яблоки для зубов

Винтовые сепараторы

Жидкость, в которую помещена взвесь полезного ископаемого, движется по вертикальной оси, по винтовому желобу. Здесь на породу воздействует две силы – гравитационная и центробежная. В результате этого процесса, тяжелые частицы перемещаются вдоль внутреннего борта желоба, а легкие по его внешней части. По завершению движения жидкости, они попадают в разные отсеки, и отправляются на дальнейшую переработку или утилизируются.

Обогащение полезных ископаемых в горнодобывающей промышленности

Центробежный концентратор

Этот способ является наиболее современным и эффективным на сегодня среди гравитационных. Его особенность в том, что он позволяет отделить минимальные частички полезного ископаемого от пустой породы. Благодаря воздействию центробежной силы, удается увеличить массу частиц, в результате чего и происходит сепарация. Для осуществления этого метода используется специальная установка – гидроциклон. В нем происходит вихревое вращение жидкости, благодаря чему образуется центробежная сила, заставляющая породу разделяться на фракции.

Обогащение полезных ископаемых в горнодобывающей промышленности

Воздушная сепарация (подвид гравитационной)

Это один из самых старых способов обогащения полезных ископаемых, но его не часто применяют в промышленных целях. Использование воздушной сепарации было разработано для районов, которые не обеспечены достаточным количеством водных ресурсов, из-за чего их использование не рентабельно. Одно из значительных преимуществ этого способа – минимальный вред окружающей среды.

Принцип действия воздушной сепарации в том, что струя воздуха, подающаяся под давлением, разрушает породу, высвобождая необходимое сырье. Это подходит для железных руд, где плотность пустого сырья значительно ниже, чем металла. Впервые его применили в Мексике, для обработки золотоносной руды, где воздушная сепарация показала хороший результат. Существенным недостатком этого метода является климатическая зависимость – влажность окружающей среды не должна превышать 5-6%.

Магнитное обогащение

Метод магнитного обогащения используется только для руд, которые имеют в составе магнитное сырье (железных, марганцевых, медно-никелевых руд и руд редких металлов). Его проводят в мокрой и сухой среде, в зависимости от плотности и гидрофильности пустой породы. Иногда в качестве первичной обработки сырья используется обжиг – он повышает его магнитные свойства.

Преимущество этого метода в низкой себестоимости. Устройства для сепарации долговечны, не требуют постоянного обслуживания и автоматизированы. К тому же он не оказывает негативного влияния на экологию местности. Учитывая постоянное развитие технологий, эффективность магнитной сепарации значительно увеличивается.

Обогащение полезных ископаемых в горнодобывающей промышленности

Руды, подлежащие магнитному обогащению:

1. Сильномагнитные:
1.1. магнетит,
1.2. франклит,
1.3. пиротин,
1.4. мартит

2. Магнитные:
2.1. ильменит,
2.2. гематит,
2.3. хромит

3. Слабомагнитные:
3.1. глауконит,
3.2. доломит,
3.3. пирит.

4. Не магнитные:
4.1. нерудные ископаемые.

Обогащение проводится в магнитном сепараторе, где разделяется смесь минералов и металлических включений. Он может быть роторным, барабанным и валковым, но принцип разделения остается одинаковым. При движении магнитной головки, восприимчивый материал движется по направлению к полю, а пустая порода не меняет своей траектории. Существуют приспособления, которые скомбинированы с грохотами, для вибрационного дробления материала.

Магнитная сепарация впервые была изобретена еще в 1792 году, но ее промышленное использование началось только в 19 веке.

Электрическое обогащение

Одним из самых новых и эффективных методов является электрическая сепарация сырья. Но он подходит только для полезных ископаемых, которые восприимчивые к воздействию тока.

Способы электрической сепарации материала:

  1. Электрическая.
  2. Электростатическая.
  3. Диэлектрическая.
  4. Трибоэлектрическая.
  5. Трибоадгезионная.

Основа этого метода – существенные различия в их электрической природе. Прежде, чем приступить к процессу обогащения, необходимо зарядить восприимчивый материал. Благодаря этому, его можно будет отделить от пустой породы. Изменения электрического поля можно достигнуть несколькими путями – индукция, касание, воздействие газовыми ионами.

Обогащение полезных ископаемых в горнодобывающей промышленности

Принцип разделения основывается на том, что поведение проводника и диэлектрика разное. При контакте одноименных зарядов, они отталкиваются, а непроводник остается неподвижным. Если заряды разные, то они притягиваются. Из-за этого, порода с большим количеством полезного сырья отделяется от пустой. Электрическая сепарация – один из самых эффективных процессов обогащения полезных ископаемых, без применения химических реагентов.

Флотационное обогащение

Чаще всего этот способ применяется в обогащении медной руды. В основе принципа действия этого метода лежит разделение жидкости на фракции, при котором гидрофобные частицы удерживаются на поверхности легкого слоя, и поднимаются на поверхность с пеной или реагентом.

Существует 2 типа флотационных методов обогащения:

  1. Жидкость-жидкость (масляная, пленочная).
  2. Жидкость-газ (пенная).

В промышленных масштабах чаще используется пенная флотация. Жидкость состоит из реагентов, которые увеличивают адгезивные свойства полезного ископаемого. При вспенивании суспензии, частицы металла, например, меди, прикрепляются к пузырькам воздуха, и всплывают на поверхность. Пустая порода оседает на дно, а пена собирается и отправляется в дальнейшее производство.

Читайте также:  Чем полезен гранат когда он созревает

Обогащение полезных ископаемых в горнодобывающей промышленности

Пленочная и масляная сепарация появилась намного раньше. В качестве реагента, к которому прикреплялось полезное ископаемое, использовались перья смазанные жиром или смола. При всплывании на поверхность, они задерживали в себе частички гидрофобных материалов. Но, в сравнении с ним, пенная сепарация несколько эффективнее и дешевле.

Радиометрическая сепарация

Этот метод является одним из самых дорогих, используется для руд с низким содержанием полезного сырья. Например, он высокоэффективен в поиске драгоценных камней, концентрация которых в породе может достигать 0,1%. Основа обогащения полезных ископаемых этим методом – способность минералов к излучению или восприимчивость к облучению Он чувствителен для частичек 2-300 мм. Принцип действия построен на восприимчивости ископаемого к излучению. Во время облечения, камни начинают источать свечение. Специальный прибор регистрирует его и подает поток воздуха, в результате чего, частица выбрасывается в приемник.

Обогащение полезных ископаемых в горнодобывающей промышленности

Химическая сепарация

При обработке урановых, вольфрамовых, медных, медно-никелевых руд активно используется и метод химического обогащения. Также для обезжелезивания каолинов, кварца и полевого шпата. Ископаемое помещают в специальный реагент, который растворяет пустую породу, не меняя состав полезного сырья. Благодаря этому методу можно получить высокую эффективность обогащения, но его себестоимость достаточно высока. Поэтому его используют в случаях, когда концентрация материала в руде достаточно низкая, из-за чего другие методы сепарации будут не результативны.

Обогащение полезных ископаемых в горнодобывающей промышленности

Одним из самых новых является химико-биологическое обогащение. В основе лежит принцип выщелачивания, разрушения кристаллических решеток пустой породы бактериями, например, Thiobacillus ferroxidans, Ferrobacillus tiooxidans. Также продукты жизнедеятельности этих бактерий являются сильными окислителями, благодаря чему разрешение пустой породы происходит намного быстрее. В результате этого процесса можно перерабатывать руды с низким содержанием полезного ископаемого.

Обогатительные фабрики

Обогащение полезных ископаемых – это способ увеличения концентрации ценного сырья, и отделения его от пустой породы. Оно необходимо для получения чистых металлов, угля, драгоценных камней. Каждое горнодобывающее предприятие не может обойтись без обогатительной фабрики, где и происходит процесс сепарации. Они могут, как располагать на месте добычи полезных ископаемых, так и при заводах, которые перерабатывают уже готовое сырье.

Современные обогатительные фабрики являются полностью автоматизированными, а речное вмешательство сведено до минимума. На них в сутки может быть переработано до 100 тысяч тонн руды. Очень часто методы обогащения полезных ископаемых комбинируются, как, например, химический и флотацинный.

Источник

Обогащение полезных ископаемых

Мальцева О.Ю.,Самылин В.Н.
Донецкий национальный технический университет

Введение

Обогащение полезных ископаемых – это комплекс технологических мероприятий, направленных на повышение концентрации полезных компонентов в минералах, добытых из недр. Процесс обогащения занимает промежуточное положение между добычей и последующей переработкой полезных компонентов. Он обусловлен технологией дальнейшей переработки полезных ископаемых.

Необходимость обогащения, как правило, связана с малым содержанием ценного компонента в добытой руде. Например, содержание молибдена в руде составляет 0.06 % , в то время как для металлургического передела содержание молибдена должно быть не менее 45%. При малой концентрации полезного компонента в процессе металлургического передела происходит потеря металла, кроме того, требуется огромное количество теплоносителей. Таким образом, обогащение – операция, вызванная технологией и экономикой процессов переработки.

Виды полезных ископаемых

Все полезные ископаемые, которые подвергаются обогащению, можно разделить на следующие типы:

1. Металлические – содержащие медь, свинец, цинк, молибден и т. д.;
2. Неметаллические – доломит, сера, фосфорит, калийные соли и т.д.;
3. Углеродсодержащие – графит, каменный уголь, антрацит.

Типы обогатительных фабрик

В зависимости от обогащаемого сырья обогатительные фабрики классифицируются на следующие типы:

• Фабрики, обогащающие руды черных и цветных металлов – ГОКи, ЦГОКи, ГМК;

• Фабрики, обогащающие угли, антрациты – ГОФ, ЦОФ;

• Фабрики при коксохимических заводах – ОФ.

Продукты обогащения

В результате обогащения получают следующие продукты:

• Концентрат – продукт, содержащий максимальное количество полезного компонента;

• Промежуточный продукт (промпродукт) – занимающий промежуточное положение по качеству между концентратом и отходами;

• Отходы – продукт, содержащий минимальное количество полезного компонента.

Технологические показатели процессов обогащения

Различают 2 группы показателей:

1. Характеризующие количество обогащаемого материала;

2. Характеризующие качество обогащаемого материала и продуктов обогащения.

К количественным показателям относятся нагрузка и выход.

Нагрузка (Q, т/ч) – это выраженное в тоннах в час количество материала, поступающего в операцию.
Выход (y, %) – это выраженное в процентах к исходному материалу количество продукта.

y = Qпрод* 100/Qin, %

Качество продуктов обогащения оценивается следующими показателями.
Для углей – это:

Зольность (Аd, %), характеризует количество негорючего остатка после сжигания единицы массы продукта.
Влажность (Wr,%), характеризует содержание влаги в единице массы продукта.
Содержание серы – сернистость (Sd,%), характеризует содержание серы в углях или продуктах обогащения.
Содержание летучих веществ (Vd,%) – характеризует содержание углеводородов в угле.
Для коксующихся углей характерны следующие качественные показатели:

Читайте также:  Что делать чтобы сохранить полезные ископаемые

Аdисх = 25 – 40 %…..исходный уголь;
Аdк-т = 4 – 8 %…….концентрат;
Аdпп = 35 – 45 %….промпродукт;
Аdотх = 75 – 85 %….отходы.

Для руд используются следующие показатели:

• Содержание металла в исходной руде…….. a, %;

• Содержание металла в концентрате …… b, %;

• Содержание металла в отходах ……………Q, %;

Эффективность процесса оценивается показателем, который называется извлечение (E, %).

E = y*b/a, %

Виды операций обогащения

Процесс обогащения включает следующие операции:

1. Подготовительные. К ним относятся: дробление, измельчение, грохочение. Предназначены для подготовки материала к обогащению.
2. Основные. К ним относятся: гравитационные процессы, флотационные процессы, магнитное обогащение, электрическое обогащение, специальные методы обогащения. Предназначены для непосредственного разделения минерала на полезные компоненты и отходы.
3. Заключительные. К ним относятся: обезвоживание, классификация на товарные сорта. Предназначены для доведения продуктов обогащения до нормативных показателей.

Последовательность операций обогащения называется технологической схемой.

Свойства минералов и методы обогащения

В основу процесса обогащения положены различия минералов в определённых свойствах. Чем контрастнее эти различия, тем выше эффективность разделения минералов. К свойствам минералов, положенным в основу разделения, относятся:

• Плотность;

• Смачиваемость водой;

• Магнитная восприимчивость;

• Электропроводность;

• Группа свойств, положенных в основу специальных методов обогащения.

Плотность положена в основу гравитационных процессов, к которым относится: обогащение в тяжёлых средах, отсадка, обогащение на концентрационных столах, обогащение на шлюзах, в винтовых сепараторах, тяжелосредных гидроциклонах.

Различие в смачиваемости положено в основу процесса флотации.
Различие в магнитных свойствах положено в основу магнитного обогащения.
Различие в электрических свойствах положено в основу электросепарации.
Различие в цвете, блеске, твёрдости, коэффициенте трения, радиоактивном излучении и т. д. положено в основу специальных методов обогащения.

Примеры основных операций обогащения

Гравитационное обогащение

Гравитационные методы обогащения основаны на различии в плотности разделяемых компонентов. Один из методов – обогащение в тяжёлых средах. Разделение происходит в жидкости, имеющей плотность промежуточную относительно плотностей разделяемых минералов. Частицы угля, имеющие плотность меньше плотности разделения, под действием сил Архимеда поднимаются на поверхность разделяющей среды. Частицы породы, имеющие плотность выше плотности разделяющей среды, опускаются вниз. Таким образом, неупорядоченная смесь угля и породы разделяется на два продукта: концентрат и отходы.

Флотационное обогащение

Флотационные методы обогащения основаны на различии в смачиваемости разделяемых компонентов. В этой связи все минералы делятся на две группы: гидрофильные – смачиваемые водой; гидрофобные – несмачиваемые водой.

Разделение происходит в водной среде, где кроме твёрдой фазы, т.е. непосредственно обогащаемого материала, присутствует газообразная фаза – пузырьки воздуха.
Поднимаясь на поверхность флотационной камеры, пузырьки воздуха сталкиваются с гидрофобными и гидрофильными частицами материала. Гидрофобные частицы (зерна угля) прилипают к пузырькам воздуха и выносятся на поверхность камеры. Гидрофильные частицы породы смачиваются водой, не прилипают к пузырькам воздуха и остаются в объёме камеры.

Таким образом, происходит разделение материала на два продукта (уголь – порода) в результате различной смачиваемости частиц.

Магнитное обогащение

Магнитные методы обогащения основаны на различии в магнитных свойствах разделяемых компонентов. Процесс предназначен для обогащения руд чёрных металлов (железных, марганцевых, хромовых). Обогащение осуществляется в воздушной либо в жидкой среде.Исходная руда с водой (пульпа) поступает в ванну сепаратора. Магнитные частицы, попадая в зону действия поля магнитной системы, притягиваются к барабану, выносятся им за область действия поля и удаляются с поверхности барабана скребком. Немагнитная фракция разгружается в нижней части ванны сепаратора.

Электросепарация

Процесс электросепарации полезных ископаемых основан на различии в электропроводности разделяемых компонентов.
Исходный материал крупностью 0 – 3 мм поступает на заряженный осадительный электрод, выполненный в виде барабана из нержавеющей стали. Проводники, соприкасаясь с барабаном, заряжаются одноимённым с ним зарядом и отталкиваются от него. Непроводники дольше удерживаются на барабане и имеют другую траекторию. В средней части сепаратора разгружаются полупроводники. Таким образом, неупорядоченная смесь зёрен с различной электропроводностью разделяется на три качественно разных продукта: концентрат (проводники); промпродукт (полупроводники); отходы (непроводники).

Обогащение по трению (специальные методы)

Этот метод основан на различии в коэффициентах трения разделяемых минералов. Обогащение осуществляется на наклонной поверхности. Частицы, отличающиеся коэффициентом трения, приобретают на наклонной плоскости различную скорость и, следовательно, имеют различную траекторию движения. Таким образом, происходит их разделение.

начало
  Перейти к следующему источнику
||  Перейти к предыдущему источнику

Источник