Термический коэффициент полезного действия в тепловом двигателе

Термический коэффициент полезного действия в тепловом двигателе thumbnail

На чтение 9 мин. Обновлено 14 ноября, 2020

Термический КПД

Степень совершенства преобразования теплоты в механическую работу в термодинамическом цикле двигателя оценивается термическим (или тепловым, или термодинамическим) коэффициентом полезного действия ηt .

Термический КПД Отношение работы, совершенной в прямом обратимом термодинамическом цикле, к теплоте, сообщенной рабочему телу от внешних источников.

где At – тепло, преобразованное в цикле в работу; Q1 – тепло, подведённое в цикле к рабочему телу; Q2 – тепло, отданное в цикле рабочим телом.

Термический КПД
На индикаторной диаграмме это отношение площадей работы за цикл At (область заштрихованая «в клетку») и подведённой в цикле к рабочему телу теплоты Q1 (вся заштрихованная область).

Термический КПД термодинамического цикла показывает, какое количество получаемой теплоты машина превращает в работу в конкретных условиях протекания идеального цикла. Чем больше величина ηt , тем совершеннее цикл и тепловая машина.

В качестве критерия оценки термодинамических циклов часто используют цикл Карно, потому что КПД тепловой машины Карно максимален в том смысле, что никакая тепловая машина с теми же температурами нагревателя и холодильника не может обладать бόльшим КПД [1]. Формула для расчёта термического КПД данного цикла общеизвестна

где T1 – абсолютная температура нагревателя; T2 – абсолютная температура холодильника.

Из анализа цикла Карно можно сделать следующие выводы:

  1. КПД любого термодинамического цикла тем больше, чем больше разница температур нагревателя T1 и холодильника T2 ;
  2. термический КПД никогда не достигает 100 %, потому что температура T2 в лучшем случае равна температуре окружающей среды;

Сегодня наибольшая разница температур достигнута в двигателях внутреннего сгорания, благодаря высокой температуре рабочего тела T1 . Температура газов в цилиндре поршневого ДВС достигает 2000 °C и более, а в газовой турбине порядка 900 – 1300 °C, что связано с необходимость обеспечить жаропрочность лопаток турбины. Для двигателей с внешним подводом теплоты такие значения температур рабочего тела остаются пока недостижимыми из-за высокого термического сопротивления на границе нагреватель-рабочее тело. Температура пара в современных паровой турбине или поршневом паровом двигателе находится в диапазоне от 300 до 600 °C.

Стоит заметить, что высокий термический КПД не служит гарантией высокого эффективного КПД двигателя.

Читайте также

Вначале спойлеры стали применять на гоночных автомобилях для увеличения сцепного усилия колес, а затем они перешли и на обычные автомобили, где стали применяться и для снижения сопротивления воздуха.

В статье описано влияние особенностей процесса сгорания топливовоздушной смеси, а также конструкции камеры сгорания на экономичность дизельного двигателя.

Источник

Циклы. Понятие термического КПД. Источники теплоты.

В процессе расширения газ производит работу против сил внешнего давления. Для того чтобы вновь повторить тот же процесс расширения газа и вновь получить работу , нужно возвратить газ в исходное состояние т.е. сжать газ. При этом газ совершит круговой процесс (цикл). На сжатие газа, естественно, должна быть затрачена работа; эта работа подводится к газу от какого-либо внешнего источника.

Понятно, что процесс сжатия газа от давления p2 до давления p1 нужно осуществить по пути, отличному от пути процесса расширения. В противном случае работа, получаемая при расширении газа, будет равна работе, затрачиваемой на сжатие, и суммарная работа, полученная в результате кругового процесса, будет равна нулю. Работа, отдаваемая системой за один цикл (будем называть ее работой цикла), равна разности (алгебраической сумме) работы расширения и работы сжатия. Понятно, что путь процесса сжатия следует выбрать таким образом, чтобы работа сжатия по абсолютной величине была меньше работы расширения, иначе работа цикла будет отрицательной, т.е. в результате цикла работа будет не производиться, а затрачиваться; впрочем, как будет показано в дальнейшем, в определенных случаях (циклы холодильных машин) используется именно такое построение цикла.

Циклические процессы, в результате которых производится работа, осуществляются в различных тепловых двигателях. Тепловым двигателем называют непрерывно действующую систему, осуществляющую круговые процессы (циклы), в которых теплота превращается в работу. Вещество, за счет изменения состояния которого получают работу в цикле, именуется рабочим телом.

Работа цикла находит очень удобную графическую интерпретацию в p, V-диаграмме.

Если 1-а-2 — кривая процесса расширения, а 2-b-1 — кривая процесса сжатия, то площадь под кривой 1-а-2 равна работе расширения, площадь под кривой 2-b-1 — работе сжатия, а площадь, ограниченная замкнутой кривой (кривой цикла) 1-a-2-b-1, представляет собой работу цикла.

Работа цикла Lц равна количеству теплоты, подведенной извне к рабочему телу. В соответствии с первым законом термодинамики : работа, производимая двигателем, строго равна количеству теплоты, отобранной от внешнего источника и подведенной к рабочему телу двигателя. Если бы можно было построить такой тепловой двигатель, в котором количество производимой работы было больше, чем количество теплоты, подведенной к рабочему телу от внешнего источника, то это означало бы, что первый закон термодинамики (закон сохранения и превращения энергии) несправедлив. Из этого следовало бы, что можно построить такой тепловой двигатель, в котором работа производилась бы вообще без подвода теплоты извне, т.е. вечный двигатель.

Что касается теплоты Qц, которая превращается в работу, то следует отметить, что на одних участках цикла теплота к рабочему телу подводится, на других — отводится. Как будет показано далее, отвод определенного количества теплоты от рабочего тела на некоторых участках цикла является неотъемлемым условием осуществимости цикла любого теплового двигателя.

Если обозначить теплоту, подводимую к рабочему телу в цикле, через Q1, а теплоту, отводимую от рабочего тела в цикле, через Q2, то очевидно, что

И тогда в соответствии с первым законом термодинамики:

Введем новое понятие о так называемом термическом коэффициенте полезного действия (КПД) цикла. Термическим КПД цикла называют отношение работы цикла к количеству теплоты, подведенной к рабочему телу в цикле. Обозначая термический КПД цикла ηт, получаем в соответствии с этим определением:

Читайте также:  Чем полезен сок свеклы для детей

Термический КПД цикла характеризует степень совершенства того или иного цикла: чем больше ηт, тем совершеннее цикл; при подводе к рабочему телу одного и того же количества теплоты Q1 в цикле, у которого ηт больше, производится большая ′ работа Lц.

Введем понятие об источниках теплоты. Систему, от которой отбирается теплота Q1, сообщаемая рабочему телу цикла, принято называть горячим источником теплоты , а систему, которой отдается теплота Q2, отбираемая от рабочего тела, холодным источником теплоты.

Спасибо за прочтение материала. В следующий раз материал про будет про обратимые и необратимые циклы, которые приведут нас к формулировке второго закона термодинамики.

Источник

Термический коэффициент полезного действия

Принципиальная схема теплового двигателя

Как показывает опыт, любой реальный тепловой двигатель должен содержать как минимум три элемента:

верхний источник тепла, имеющий температуру

и отдающий рабочему телу за цикл количество тепла ;

рабочее тело, совершающее цикл и производящее за цикл работу

;

нижний источник тепла с температурой

, получающий от рабочего тела за цикл количество тепла Q2.

Cхема теплового двигателя представлена на Рис.3.1.

Ввиду конечности размеров любого теплового двигателя рабочее тело в нём должно периодически проходить через одни и те же состояния, т.е. совершать цикл. Интегрирование выражения I начала термодинамики вдоль замкнутого контура (по циклу) даёт

(3.1)

Не равные нулю интегралы по замкнутому контуру от неполных дифференциалов

обозначим соответственно . Интеграл же по замкнутому контуру от полного дифференциала внутренней энергии равен нулю. Таким образом, I закон термодинамики в применении к тепловым двигателям даёт:

(3.2)

Этот результат есть следствие невозможности вечного двигателя первого рода, т.е. полезная работа в тепловом двигателе в точности эквивалентна количеству поглощённого рабочим телом тепла.

В качестве количественной характеристики термодинамической эффективности теплового двигателя используется термический коэффициент полезного действия(термический КПД)

, определяемый отношением полезной работы, полученной в двигателе за цикл, к затраченному теплу от верхнего источника за этот же цикл, т.е. по определению:

(3.3)

Первое начало термодинамики в применении к циклам тепловых машин (4.2) в формулировке В. Томсона даёт:

(3.4)

причём под

понимается теплота, отнятая от верхнего источника тепла и переданная рабочему телу, т.е. по отношению к рабочему телу эта теплота положительна. Величина же есть теплота, отданная рабочим телом нижнему источнику тепла, и по отношению к рабочему телу эта теплота отрицательна, т.е., в применении к рабочему телу (3.4) должно быть записано в виде:

(3.5)

Тогда выражение для термического КПД принимает вид:

(3.6)

Итак, первый закон термодинамики даёт следующее ограничение для термического КПД тепловых двигателей:

(3.7)

в то время как второе начало в формулировке Томсона накладывает более жёсткое ограничение

(3.8)

т.е. термический КПД любого теплового двигателя строго меньше единицы, поскольку теплота, передаваемая нижнему источнику тепла, никогда не равна нулю.

В связи с этим возникает важный вопрос о нахождении максимально возможного термического КПД тепловой машины, работающей при наличии двух источников тепла, и о принципах её конструирования. Эта проблема была решена в 1824 году французским инженером Сади Карно в опубликованной им работе «Размышления о движущей силе огня и о машинах, способных развить эту силу».

Источник

КПД теплового двигателя

Как устроен тепловой двигатель

С точки зрения термодинамики (раздел физики, изучающий закономерности взаимных превращений внутренней и механической энергий и передачи энергии от одного тела другому) любой тепловой двигатель состоит из нагревателя, холодильника и рабочего тела.

Рис. 1. Структурная схема работы теплового двигателя:.

Первое упоминание о прототипе тепловой машине относится к паровой турбине, которая была изобретена еще в древнем Риме (II век до н.э.). Правда, изобретение не нашло тогда широкого применения из-за отсутствия в то время многих вспомогательных деталей. Например, тогда еще не был придуман такой ключевой элемент для работы любого механизма, как подшипник.

Общая схема работы любой тепловой машины выглядит так:

    Нагреватель имеет температуру T1 достаточно высокую, чтобы передать большое количество теплоты Q1.

Формула Карно позволяет вычислить максимально возможный КПД теплового двигателя. Чем больше разница между температурами нагревателя и холодильника, тем больше КПД.

Какие реальные КПД у разных типов двигателей

Из приведенных примеров видно, что самые большие значения КПД (40-50%) имеют двигатели внутреннего сгорания (в дизельном варианте исполнения) и реактивные двигатели на жидком топливе.

Рис. 3. КПД реальных тепловых двигателей:.

Что мы узнали?

Итак, мы узнали что такое КПД двигателя. Величина КПД любого теплового двигателя всегда меньше 100 процентов. Чем больше разность температур нагревателя T1 и холодильника Т2, тем больше КПД.

Источник

Источник

Что такое КПД 

Коэффициент полезного действия (КПД) — это характеристика эффективности механизма преобразующего энергию. КПД обычно обозначается символом η, и представляет собой отношение полезной работы к полной работе.

Полная работа — это вся работа совершенная приложенной силой.

Полезная работа — это та работа, которая требуется от данного механизма.

Коэффициент полезного действия теплового двигателя подразумевает отношение полезной работы, совершенной данным двигателем, к количеству теплоты, полученному от нагревателя.

В науку и технику определение КПД двигателя ввёл в 1824 году французский инженер Сади Карно. 

Понятие максимального значения

В силу закона сохранения энергии часть теплоты при передаче неизбежно теряется. Также часть энергии всегда отдается холодильнику. Вывод: невозможно получить полезной работы больше или столько же, сколько затрачено энергии.

Значение КПД любого механизма всегда меньше единицы.

Как устроен тепловой двигатель

Любой тепловой двигатель состоит из трех основных частей:

  • рабочего тела;
  • нагревателя;
  • холодильника.

В основе работы двигателя лежит циклический процесс.

Циклический процесс

Нагреватель с помощью, например, сгорания топливной смеси выделяет большое количество теплоты и передает ее рабочему телу.

Читайте также:  Полезные ископаемые иркутской области по районам

Рабочее тело, например пар, газ или жидкость, при нагревании расширяется и совершает работу, к примеру, вращает турбину или перемещает поршень.

Холодильник нужен, чтобы вернуть рабочее тело в начальное состояние. Он поглощает часть энергии рабочего тела. Таким образом обеспечивается цикличность, и тепловой двигатель работает непрерывно.

Идеальный тепловой двигатель Карно

Модель двигателя Карно разработал французский физик С. Карно

Рабочая часть двигателя Карно — поршень в заполненном газом цилиндре. Двигатель Карно — идеальная машина, она возможна только в теории. Поэтому в ней силы трения между поршнем и цилиндром и тепловые потери считаются равными нулю.

Механическая работа максимальна, если рабочее тело выполняет цикл, состоящий из двух изотерм и двух адиабат. При изотермическом расширении работа газа совершается за счет внутренней энергии нагревателя. При адиабатном процессе — за счет внутренней энергии расширяющегося газа. В этом цикле нет контакта тел с разной температурой, поэтому исключена теплопередача без совершения работы. Такой цикл называют циклом Карно.

Адиабатический процесс — это термодинамический процесс, происходящий без теплообмена с окружающей средой (Q=0).

Изотермический процесс — это термодинамический процесс, происходящий при постоянной температуре. Так как у идеального газа внутренняя энергия зависит только от температуры, то переданное газу количество тепла Q идет полностью на совершение работы A (Q=A).

Функционирует двигатель Карно следующим образом:

  1. Цилиндр вступает в контакт с горячим резервуаром, и газ расширяется при постоянной температуре. На этой фазе газ получает от горячего резервуара тепло.
  2. Цилиндр окружается теплоизоляцией, за счет чего количество тепла, имеющееся у газа, сохраняется. Газ продолжает расширяться, пока его температура не упадет до температуры холодного теплового резервуара.
  3. На третьей фазе теплоизоляция снимается. Газ в цилиндре, будучи в контакте с холодным резервуаром, сжимается, отдавая при этом часть тепла холодному резервуару.
  4. Когда сжатие достигает определенной точки, цилиндр снова окружается теплоизоляцией. Газ сжимается за счет поднятия поршня до тех пор, пока его температура не сравняется с температурой горячего резервуара. После этого теплоизоляция удаляется, и цикл повторяется вновь с первой фазы.

Примечание

Чем больше разница между температурами нагревателя и холодильника, тем больше КПД двигателя Карно.

Расчет коэффициента полезного действия

Формула для расчета КПД теплового двигателя:

(ɳ=frac{Q_1-Q_2}{Q_1})

Где Q1 — количество энергии, которую дает нагреватель; A — работу совершаемую рабочим телом; Q2 — количество энергии, которая отдается холодильнику.

Для расчета КПД теплового двигателя, работающего по циклу Карно, формула приобретает следующий вид:

(Elzrtln_k=frac{T_1-T_2}{T_1})

Где T1 — температура нагревателя; T2 — температура холодильника.

Примечание

Формула Карно позволяет вычислить предельный (максимально возможный) КПД теплового двигателя.

Построение графика КПД теплового двигателя

Работа, которую производит рабочее тело, в циклическом процессе численно равна площади цикла на графике зависимости давления от объема. Если цикл проходит по часовой стрелке, работа численно равна со знаком «+», если против часовой, то со знаком «-».

Для построения такого графика необходимо:

  1. Отложить объем рабочего тела (V) по оси абсцисс.
  2. Отложить давление рабочего тела (p) по оси ординат.
  3. Расположить на графике точки изотермы и адиабаты.

Для цикла Карно график будет выглядеть следующим образом:

Цикла Карно

Пример решения задачи

Задача № 1

Рассчитать КПД идеального теплового двигателя с температурой нагревания 1000º K и температурой холодильника равной 500° K.

Решение:

Применим формулу измерения КПД для идеального теплового двигателя: 

(Elzrtln_k=frac{T_1-T_2}{T_1})

T1 = 1000

T2 = 500

(Elzrtln_k=frac{1000-500}{1000})

(Elzrtln_k=0,5)

Ответ: КПД = 0,5

Источник

Физика, 10 класс

Урок 25. Тепловые двигатели. КПД тепловых двигателей

Перечень вопросов, рассматриваемых на уроке:

1) Понятие теплового двигателя;

2)Устройство и принцип действия теплового двигателя;

3)КПД теплового двигателя;

4) Цикл Карно.

Глоссарий по теме

Тепловой двигатель – устройство, в котором внутренняя энергия топлива превращается в механическую.

КПД (коэффициент полезного действия) – это отношение полезной работы, совершенной данным двигателем, к количеству теплоты, полученному от нагревателя.

Двигатель внутреннего сгорания – двигатель, в котором топливо сгорает непосредственно в рабочей камере (внутри) двигателя.

Реактивный двигатель – двигатель, создающий необходимую для движения силу тяги посредством преобразования внутренней энергии топлива в кинетическую энергию реактивной струи рабочего тела.

Цикл Карно – это идеальный круговой процесс, состоящий из двух адиабатных и двух изотермических процессов.

Нагреватель – устройство, от которого рабочее тело получает энергию, часть которой идет на совершение работы.

Холодильник – тело, поглощающее часть энергии рабочего тела (окружающая среда или специальные устройства для охлаждения и конденсации отработанного пара, т.е. конденсаторы).

Рабочее тело – тело, которое расширяясь, совершает работу (им является газ или пар)

Основная и дополнительная литература по теме урока:

1. Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика.10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 269 – 273.

2. Рымкевич А.П. Сборник задач по физике. 10-11 класс. -М.: Дрофа,2014. – С. 87 – 88.

Открытые электронные ресурсы по теме урока

https://kvant.mccme.ru/1973/12/teplovye_mashiny.htm

Теоретический материал для самостоятельного изучения

Сказки и мифы разных народов свидетельствуют о том, что люди всегда мечтали быстро перемещаться из одного места в другое или быстро совершать ту или иную работу. Для достижения этой цели нужны были устройства, которые могли бы совершать работу или перемещаться в пространстве. Наблюдая за окружающим миром, изобретатели пришли к выводу, что для облегчения труда и быстрого передвижения нужно использовать энергию других тел, к примеру, воды, ветра и т.д. Можно ли использовать внутреннюю энергию пороха или другого вида топлива для своих целей? Если мы возьмём пробирку, нальём туда воду, закроем её пробкой и будем нагревать. При нагревании вода закипит, и образовавшие пары воды вытолкнут пробку. Пар расширяясь совершает работу. На этом примере мы видим, что внутренняя энергия топлива превратилась в механическую энергию движущейся пробки. При замене пробки поршнем способным перемещаться внутри трубки, а саму трубку цилиндром, то мы получим простейший тепловой двигатель.

Читайте также:  Методы начисления амортизации срок полезного использования

Тепловой двигатель – тепловым двигателем называется устройство, в котором внутренняя энергия топлива превращается в механическую.

Вспомним строение простейшего двигателя внутреннего сгорания. Двигатель внутреннего сгорания состоит из цилиндра, внутри которого перемещается поршень. Поршень с помощью шатуна соединяется с коленчатым валом. В верхней части каждого цилиндра имеются два клапана. Один из клапанов называют впускным, а другой – выпускным. Для обеспечения плавности хода поршня на коленчатом вале укреплен тяжелый маховик.

Термический коэффициент полезного действия в тепловом двигателе

Рабочий цикл ДВС состоит из четырех тактов: впуск, сжатие, рабочий ход, выпуск.

Во время первого такта открывается впускной клапан, а выпускной клапан остается закрытым. Движущийся вниз поршень засасывает в цилиндр горючую смесь.

Во втором такте оба клапана закрыты. Движущийся вверх поршень сжимает горючую смесь, которая при сжатии нагревается.

В третьем такте, когда поршень оказывается в верхнем положении, смесь поджигается электрической искрой свечи. Воспламенившаяся смесь образует раскаленные газы, давление которых составляет 3 -6 МПа, а температура достигает 1600 -2200 градусов. Сила давления толкает поршень вниз, движение которого передается коленчатому валу с маховиком. Получив сильный толчок маховик будет дальше вращаться по инерции, обеспечивая движение поршня и при последующих тактах. Во время этого такта оба клапана остаются закрытыми.

В четвертом такте открывается выпускной клапан и отработанные газы движущимся поршнем выталкиваются через глушитель (на рисунке не показан) в атмосферу.

Любой тепловой двигатель включает в себя три основных элемента: нагреватель, рабочее тело, холодильник.

Для определения эффективности работы теплового двигателя вводят понятие КПД.

Коэффициентом полезного действия называют отношение полезной работы, совершенной данным двигателем, к количеству теплоты, полученному от нагревателя.

Q1 – количество теплоты полученное от нагревания

Q2 – количество теплоты, отданное холодильнику

– работа, совершаемая двигателем за цикл.

Этот КПД является реальным, т.е. как раз эту формулу и используют для характеристики реальных тепловых двигателей.

Зная мощность N и время работы t двигателя работу, совершаемую за цикл можно найти по формуле

Передача неиспользуемой части энергии холодильнику.

В XIX веке в результате работ по теплотехнике французский инженер Сади Карно предложил другой способ определения КПД (через термодинамическую температуру).

Главное значение этой формулы состоит в том, что любая реальная тепловая машина, работающая с нагревателем, имеющим температуру Т1, и холодильником с температурой Т2, не может иметь КПД, превышающий КПД идеальной тепловой машины. Сади Карно, выясняя при каком замкнутом процессе тепловой двигатель будет иметь максимальный КПД, предложил использовать цикл, состоящий из 2 адиабатных и двух изотермических процессов

Цикл Карно – самый эффективный цикл, имеющий максимальный КПД.

Не существует теплового двигателя, у которого КПД = 100% или 1.

Формула дает теоретический предел для максимального значения КПД тепловых двигателей. Она показывает, что тепловой двигатель тем эффективнее, чем выше температура нагревателя и ниже температура холодильника. Лишь при температуре холодильника, равной абсолютному нулю, η = 1.

Но температура холодильника практически не может быть ниже температуры окружающего воздуха. Повышать температуру нагревателя можно. Однако любой материал (твердое тело) обладает ограниченной теплостойкостью, или жаропрочностью. При нагревании он постепенно утрачивает свои упругие свойства, а при достаточно высокой температуре плавится.

Сейчас основные усилия инженеров направлены на повышение КПД двигателей за счет уменьшения трения их частей, потерь топлива вследствие его неполного сгорания и т. д. Реальные возможности для повышения КПД здесь все еще остаются большими.

Повышение КПД тепловых двигателей и приближение его к максимально возможному — важнейшая техническая задача.

Тепловые двигатели – паровые турбины, устанавливают также на всех АЭС для получения пара высокой температуры. На всех основных видах современного транспорта преимущественно используются тепловые двигатели: на автомобильном – поршневые двигатели внутреннего сгорания; на водном – двигатели внутреннего сгорания и паровые турбины; на железнодорожном – тепловозы с дизельными установками; в авиационном – поршневые, турбореактивные и реактивные двигатели.

Сравним эксплуатационные характеристики тепловых двигателей.

КПД:

Паровой двигатель – 8%.

Паровая турбина – 40%.

Газовая турбина – 25-30%.

Двигатель внутреннего сгорания – 18-24%.

Дизельный двигатель – 40– 44%.

Реактивный двигатель – 25%.

Широкое использование тепловых двигателей не проходит бесследно для окружающей среды: постепенно уменьшается количество кислорода и увеличивается количество углекислого газа в атмосфере, воздух загрязняется вредными для здоровья человека химическими соединениями. Возникает угроза изменения климата. Поэтому нахождение путей уменьшения загрязнения окружающей среды является сегодня одной из наиболее актуальных научно-технических проблем.

Примеры и разбор решения заданий

1. Какую среднюю мощность развивает двигатель автомобиля, если при скорости 180 км/ч расход бензина составляет 15 л на 100 км пути, а КПД двигателя 25%?

Дано: v=180км/ч = 50 м/с, V = 15 л = 0,015 м3, s = 100 км = 105 м, ɳ = 25% = 0,25, ρ = 700 кг/м3, q = 46 × 106 Дж/кг.

Найти: N.

Решение:

Запишем формулу для расчёта КПД теплового двигателя:

Работу двигателя, можно найти, зная время работы и среднюю мощность двигателя:

Количество теплоты, выделяющееся при сгорании бензина, находим по формуле:

Учитывая всё это, мы можем записать:

Время работы двигателя можно найти по формуле:

Из формулы КПД выразим среднюю мощность:

.

Подставим числовые значения величин:

После вычислений получаем, что N=60375 Вт.

Ответ: N=60375 Вт.

2. Тепловая машина имеет КПД 25 %. Средняя мощность передачи теплоты холодильнику составляет 4 кВт. Какое количество теплоты рабочее тело получает от нагревателя за 20 с?

Дано: ɳ = 25%, N = 4000 Вт, t = 20 с.

Найти: Q1.

Решение

  =

– это количество теплоты, отданное холодильнику

Источник