Технологии добычи полезных ископаемых на дне океана

Технологии добычи полезных ископаемых на дне океана thumbnail

Ученые из Университета Дьюка (Duke University, США) призвали обратить внимание на то, как подводная добыча полезных ископаемых может отразиться на целостности экосистемы океанов. Эксперты высказали опасения, что из-за разработки подводных залежей полезных ископаемых могут пострадать редкие малоизученные виды морских обитателей, пишет издание The Verge.

Сейчас активной добычей полезных ископаемых со дна океана занимается Япония. В районе самого крупного острова японского архипелага Рюкю, Окинава, на глубине 1,5 км ниже уровня моря находится “месторождение” драгоценных металлов. Там действуют гидротермальные источники, так называемые черные курильщики, через которые в океан попадает высокоминерализованная горячая вода, содержащая частицы металлов. При контакте с холодной водой они оседают на дне океана. Глубоководная горнодобывающая промышленность страны получает на этом месторождении цинк, золото и другие металлы, которые используют в производстве смартфонов.

Гидротермальные источники были обнаружены в 1970-х гг. и с тех пор остаются объектами пристального внимания ученых. Территорию рядом с ними населяют различные живые сложные существа, о которых практически ничего не известно. Они существуют на основе хемосинтеза (организмы для построения своего тела используют неорганические вещества почвы, воды и воздуха). В восточной части Тихого океана вокруг гидротермальных источников живут огромные черви, а в юго-западной части – два уникальных вида улиток. Возле “черных курильщиков” у Антарктиды живут крабы-йети (Kiwa hirsuta), получившие свое имя из-за внешнего вида – они белые и полностью покрыты ворсинками. Это не волосы в привычном понимании, а перистые щетинки, в которых живут бактерии, очищающие воду из источников от содержащихся в них ядовитых веществ. Есть мнение, что этими же бактериями питаются крабы.

“Там встречается много странного и удивительного. Это самое близкое соприкосновение человечества с чужеродными формами жизни”, – считает эколог, профессор Университета Дьюка Эндрю Талер (Аndrew David Thaler).

Добыча полезных ископаемых может поставить под угрозу существование уникальных видов живых существ, поскольку разработка предполагает измельчение породы для доставки ее на поверхность. “Иного способа нет. Что бы там ни добывалось, все живое уничтожается”, – добавляет Талер.

Восстановление “черных курильщиков”

По словам эколога, “черные курильщики” умеют восстанавливаться. Так, из опыта наблюдений Талер знает, что после извержений подводных вулканов источники постепенно восстанавливаются и вновь начинают функционировать спустя примерно десятилетие. Однако, как отмечает Синди Ли ван Довер (Cindy Lee Van Dover), профессор Университета Дьюка, неизвестно, какой объем разрушений смогут выдержать отверстия гидротермальных источников во время добычи полезных ископаемых.

Кроме того, источники содержат токсичные химические вещества – свинец и мышьяк. Неизвестно, что будет с окружающим их животным миром и ближайшими прибрежными зонами, если случится авария при добыче и произойдет разлив.

Регулирование работ на дне

За тем, как ведутся подводные разработки полезных ископаемых, следит Международный орган по морскому дну (International Seabed Authority, ISA) – организация, созданная на основании Конвенции ООН по морскому праву. ISA выдала 25 контрактов странам на подводную разведку полезных ископаемых. Никаких крупных разработок пока не ведется, поскольку организация еще не выяснила до конца, как именно глубоководная добыча влияет на природу. ISA взяла на себя обязательство к 2020 г. разработать кодекс экологических нормативов разработки полезных ископаемых. Как предположило издание The Verge, к 2025 г. в океане могут появиться крупные разработки подводных месторождений.

Талер убежден, что человечество должно сделать все возможное, чтобы защитить гидротермальные источники, поскольку они могут послужить источниками уникальных знаний о планете и природе. “Странные существа живут в абсолютной темноте, среди токсичных веществ. Глубоководный мир – наше космическое пространство. Но оно полно живых существ, которые живут вопреки всему, бросая вызов нашему восприятию жизни”, – говорит Талер.

Материал предоставлен проектом “+1”.

Источник

Подводная добыча полезных ископаемых, разработка месторождений полезных, ископаемых под водами Мирового океана.

  Разработка поверхностных месторождений шельфа и ложа океана производится открытым способом через водную толщу. На поверхности шельфа (19% площади суши) и ложа океана (50% площади Земли) сосредоточены огромные минеральные ресурсы. Только в железомарганцевых конкрециях донных отложений Тихого океана запасы марганца прогнозируются в 2,4×1011т, кобальта — 2,8×109т, никеля — 9,4×109т, меди — 5,3×109т. На шельфе располагаются россыпные месторождения тяжёлых минералов и металлов.

  Первые попытки освоения шельфа сделаны в 11 в. до н. э., когда финикийцы из отложений морских ракушек добывали сырьё для производства пурпурной краски. Позднее (6 в. до н. э.) на островах Полинезии велась разработка коралловых рифов для получения строительных материалов. В 3 в. до н. э. с глубины 4 м у о. Халка, в пролив Босфор, ныряльщики добывали медную руду. В конце 19 в. началось освоение россыпей золота, затем ильменита, рутила, циркона, монацита на побережье Австралии (1870), Бразилии (1884), Индии (1909). В 20-х гг. 20 в. была начата добыча олова из морских россыпей Индонезии, в 1963 — алмазов на шельфе Юго-Западной Африки. В начале 60-х гг. добывалась железная руда из россыпей залива Ариаке (Япония). В СССР работы по освоению морских россыпей были начаты в 1966 на шельфе восточной части Балтики, где добывались титано-цирконовые концентраты.

Читайте также:  Какие самые полезные овощи или фрукты для беременных

  В 1973 свыше 70 дражных предприятий добывали из россыпей шельфа около 120—130 млн. м3 горной массы, при этом добыча оловянных концентратов из морских россыпей достигала 10% от мирового объёма добычи олова (без СССР), а стоимость добытых алмазов в отдельные годы составляла свыше 3% от общей стоимости добываемых алмазов.

  В зависимости от горно-геологических и гидрометеорологических условий, глубины разработки и вида полезного ископаемого применяются различные технические средства (рис. 1), а также способы П. д. Разрабатываются россыпи преимущественно многочерпаковыми, гидравлическими и грейферными драгами. Для разработки железомарганцевых конкреций испытаны и строятся (1974) драги с гидравлическим подъёмом (эрлифт) и ковшами, закрепляемыми на бесконечном тросе.

  Перспективы открытой П. д. на шельфе определяются её преимуществами по сравнению с разработкой месторождений суши: строительство дражных и др. технических судов на крупных судостроительных заводах исключает период строительно-монтажных работ на месторождении; значительно уменьшаются объёмы по вскрытию месторождений полезных ископаемых; исключается строительство подъездных путей, линий электропередач и жилых посёлков, а также отпадает необходимость отчуждения с.-х. земель и последующей их рекультивации.

  Горные работы на шельфе затрудняются наличием волнений на водной поверхности, заносимостью выработок на дне моря, размывом отвалов, выемкой пород и их сбросом в среду жизнедеятельности морской фауны и флоры, а также необходимостью поддержания устойчивости береговых линий.

  Основные направления научно-исследовательских работ по освоению шельфа в СССР: разработка методов геологических поисков и опробования морских россыпей шельфа с установлением их геолого-экономической оценки; разработка научных основ технологии подводной добычи полезных ископаемых в районах континентального шельфа и океанического ложа без ущерба для водных организмов; создание машин, производящих добычу и обогащение полезных ископаемых на всех глубинах шельфа.

  Разработка месторождений недр Мирового океана осуществляется подземными горными выработками и буровыми скважинами.

  П. д. из коренных месторождений по методам выемки руд полезного ископаемого мало чем отличается от добычи на суше (см. Подземная разработка полезных ископаемых). На большинстве подводных шахт стволы закладываются на суше, вследствие этого откаточные выработки имеют протяжённость в несколько км. Применяют вскрытие шахтных полей стволами с искусственных островов (например, шахта «Майке», Япония). Глубина заложения горных выработок под дном, гарантирующая их от затопления, зависит от свойств вышележащих пород и обычно равна 65—80 м. Разработка месторождений ведётся с закладкой выработанного пространства; проветривание морских шахт осуществляется через один ствол по трубам.

  В 1974 эксплуатировалось 57 угольных шахт в Японии, Великобритании, Турции, на о. Тайвань, две железорудные шахты в Финляндии и Канаде, два оловянных рудника в Великобритании и СССР.

  Наибольший объём П. д. приходится на добычу нефти и газа из недр Мирового океана. Перспективной является также добыча твёрдых полезных ископаемых геотехнологическими методами (см. Подземное выщелачивание, Подземное растворение). Например, годовая добыча серы с помощью расплавления на месторождениях Мексиканского залива превышает 600 тыс. т (1973).

  К П. д. относят также извлечение полезных ископаемых из морской воды, основанное на физико-химических процессах выделения растворённых в ней солей, различных химических элементов, общий объём которых достигает 48 млн. км3 (в т. ч. около 2×1016т натрия, около 2×1015т магния, около 1,3×1014т брома).

  С середины 19 в. из маточных рассолов поваренной соли во Франции начали получать бром. С 30-х гг. 20 в. начато промышленное извлечение из морской воды магния. В 1970 в СССР, США, Великобритании и др. странах работало свыше 100 предприятий по добыче хлористого натрия из морской воды с объёмом производства свыше 10 млн. т, магния 300 тыс. т и брома 75 тыс. т.

  Технология извлечения химических элементов из морской воды предусматривает, как правило, их концентрацию, а затем, при взаимодействии насыщенного раствора с др. элементами, их получение в виде соединений (рис. 2).

Читайте также:  Чем полезен свежевыжатый сок из апельсина

  Концентрация химических элементов в морской воде низкая (за исключением натрия, магния, брома), и потому их извлечение нерентабельно (1974). Перспективы в этом направлении связаны с увеличением объёмов опреснения морской воды. Из получаемых при этом попутных рассолов химических элементы можно эффективно извлекать на установках по адсорбционному обмену и экстракции. О правовых вопросах П. д. см. в ст. Шельф. См. также статьи Океан и Морская геофизическая разведка.

  Лит.: Меро Д., Минеральные богатства океана, пер. с англ., М., 1969; Добыча полезных ископаемых со дна морей и океанов, М., 1970.

  Г. А. Нурок. Ю. В. Бубис.

Технологии добычи полезных ископаемых на дне океана

Рис. 2. Схема получения магния из морской воды: 1 — трубопровод для подачи морской воды; 2 — распределительный резервуар; 3 — устройство для гидрообработки; 4 — вторичный реактор; 5 — третичный реактор; 6 — первичный загуститель; 7 — ёмкость для хранения пресной воды; 8 — промывная установка; 9 — вакуум-фильтр; 10 — винтовой транспортёр; 11 — ёмкость для хранения загустелого Mg(OH)2; 12 — устройство для гидрообработки пресной воды; 13 — роторные сушильные печи.

Технологии добычи полезных ископаемых на дне океана

Рис. 1. Технические средства подводной добычи полезных ископаемых.

Оглавление

Источник

Клаус Экер, ведущий специалист отдела конструирования насосов для горнодобывающей промышленности и морской добычи полезных ископаемых, завод KSB, Хомбург (ФРГ)

Технология добычи полезных ископаемых со дна океана открыла принципиально новую область использования погружных электронасосных агрегатов. Совершенствование этого вида насосного оборудования остается в течение 70-ти лет одним из важнейших направлений в программе развития фирмы KSB.

Наша фирма имеет большой опыт эксплуатации погружных насосов на нефтегазодобывающих платформах в открытом море (работающие на морской воде балластные насосы, насосы системы охлаждения компрессоров, пожарные насосы и т.д.). Однако применение погружных насосов KSB (с заполненным водой электродвигателем) для транспортировки марганцевых конкреций со дна Тихого океана стало серьезной проверкой их надежности при работе в экстремальных условиях. Следует заметить, что эти руды залегают вдали от берегов на глубине 5000–10000?м. О существовании океанических залежей марганцевых конкреций человечество знало уже с прошлого века, когда англо-голландская экспедиция на борту британского исследовательского судна «Челленджер» в 1873 г. подняла в неводе первые образцы руды на поверхность. Долгое время таинственные океанические минералы оставались предметом исследований и дискуссий ученых. Было установлено, что конкреции растут в течение миллионов лет (от 0.001 до 1 мм в тысячелетие), а структура их поперечного сечения имеет поразительное сходство с годовыми кольцами дерева. В составе марганцевых конкреций обнаружили также железо, медь, никель и другие металлы. Исследования, проведенные в течение Международного геофизического года (1957/58), показали, что эти рудные образования, имеющие картофелеобразную форму, покрывают обширные площади дна Тихого, Индийского и северной части Атлантического океанов. Высокое содержание в конкрециях марганца (до 30%) в то время не представляло особого интереса, так как мировая промышленность еще не испытывала недостатка в марганцевом сырье. Но другие, более ценные компоненты, такие как медь, никель, кобальт, молибден и титан, были приняты во внимание для будущего использования.

Технологии добычи полезных ископаемых на дне океана

Сегодня большинство составляющих конкреций вызывает огромный интерес металлургов. Однако если подобные анализы конкреций ученые уже имели в своем распоряжении, то технические проблемы их добычи еще предстояло решить.

Сделать продукцию экономически выгодной возможно только при достижении высокой производительности добывающего предприятия (не менее нескольких тонн руды в час). Только в 60-х годах нашего столетия оказалось возможным сформулировать практические задачи освоения подводных месторождений.

Разработка минеральных ресурсов мирового океана стала одним из важнейших и, в то же время, очень спорным вопросом на Международных конференциях по Морскому Праву, которые проводились под эгидой ООН с 1958 по 1982 год. Основная проблема будущей морской добычи была связана не столько с возможностями современной техники, сколько с вопросами финансирования. Стоимость предварительных вложений в добывающее предприятие оценивается, по меньшей мере, в миллиард долларов. Такие затраты доступны только индустриально развитым странам, при условии объединения в них нескольких крупных компаний. Например, немецкий «Союз добычи минеральных ресурсов моря» (АМР) был представлен следующими фирмами: Deutsche Schachtbau und Tiefbohrgesellschaft, Metallgesellschaft AG, Preussag AG.

Технологии добычи полезных ископаемых на дне океана

Первым практическим достижением в промышленной добыче марганцевых конкреций с глубины 5250 метров в центральном районе Тихого океана (около Гавайских островов) стала успешная работа экспериментального судна «Sedco 445». Эта работа началась в апреле 1978 года и выполнялась совместными целенаправленными усилиями компаний SEDKO (США), INCO (Канада), DOMCO (Япония) и AMR (Германия). Только согласованная работа всех заинтересованных сторон позволила нашей фирме добиться успеха в проведении промышленного эксперимента с применением насосного оборудования для разработки океанических рудных месторождений. Фирма KSB AG получила заказ на весь объем поставки оборудования для линии транспортирования марганцевых конкреций со дна океана (трубопровод с основными транспортными насосами, струйная промывка узлов коллектора, управление коллекторным устройством с помощью погружного электродвигателя). На корабле размещалась буровая вышка, через которую проходил транспортный трубопровод диаметром 200 мм, соединяющий корабль с месторождением конкреций. Под кораблем была предусмотрена конвейерная (многоступенчатая) система гидравлического транспортирования руды. Непосредственно под буровой вышкой был расположен жесткий вертикальный трубопровод. Последняя секция транспортного трубопровода представляла собой гибкий гофрированный шланг, соединенный с коллектором. Этот шланг являлся своеобразным компенсатором при буксовании коллектора по неровному дну океана. Размещенная на корабле буровая вышка была сконструирована таким образом, чтобы движение судна не изменяло ее вертикального положения. Подвешенный к монтажной башне трубопровод (его вес составлял около 1000 т) должен был при перемещении корабля оставаться в строго зафиксированной позиции, чтобы коллектор системы находился точно над зоной добычи полезных ископаемых. Устройство, собирающее марганцевые конкреции внутри корпуса коллектора, приводилось в движение погружным электродвигателем KSB типа 10А 153/4s. Далее в транспортной линии был установлен погружной насос KSB типа UQN 294/1+8А 53/2s, который имел на выходе специальные насадки для образования сильных напорных струй. Эти струи использовались для разрыхления грунта и отделения марганцевых конкреций от донного осадочного слоя. В то время как коллектор собирал на дне конкреции, донный осадок был вовлечен в интенсивное вихревое движение. Правильность монтажа участков транспортного трубопровода на большой глубине и работа коллектора гидросистемы наблюдались на корабле с помощью подводной телекамеры. На глубине ~900 м в жестком участке трубопровода были последовательно установлены друг над другом три насоса KSB типа ВРЕ 506/6а с погружными электродвигателями типа ALBLQ 80-406 (мощность двигателя 800 кВт и напряжение сети 4000 В). Номинальная подача каждого насоса была равной 500 м3/час, а суммарный напор трех насосов составлял 265 м. Здесь необходимо напомнить, что в принципе напор насоса преодолевает только потери трения на длине 5250 м. Электронасосы имели конструкцию, позволяющую транспортировать в жидкости 5% твердого вещества (марганцевых конкреций). Из-за ограничений, которые определяются возможностями морского судна, было невозможно превышать допустимые габаритные размеры насоса и электродвигателя. Поэтому общая длина перекачивающего насоса составляла 11.3 м. Это определило выбор 10-ступенчатого секционного насоса с радиальными рабочими колесами. Наибольший внешний диаметр электронасоса при этом был равен 550 мм. Специальная гидравлическая система определяла работу насоса. Пространство между электродвигателем и байпасным кожухом формировалось в течение всего времени работы насоса. При этом минимальная скорость потока всегда превышала скорость опускания конкреций (критическую скорость). Контроль за скоростью потока осуществляли регуляторы, расположенные между трубой и электродвигателем. В порядке предупреждения каких-либо заторов (пробок) в движении конкреций и засоров насоса при ожидаемых концентрациях твердых включений был точно определен минимальный свободный проход в проточной части насоса, равный 75 мм. В результате была разработана специальная конструкция, согласующая геометрию рабочих колес и направляющих аппаратов с корпусом насоса. Силовой питающий электрокабель погружного двигателя (в бронированном исполнении), который использовался в этом проекте, был применен впервые. Электрокабель полностью защищен от воздействия морской воды. Спиральные выводы кабеля из электродвигателя и байпасного кожуха были снабжены специально разработанными для этих условий уплотнениями, которые остаются герметичными при давлении до 100 бар. Изоляция (из поливинилхлорида и полиэтилена) была предварительно испытана в специальном автоклаве под большим избыточным давлением воды. Эти испытания показали, что давление не оказывает какого-либо значительного влияния на механические и электрические свойства изоляции. Тот же результат был получен при проверке свойств материала при воздействии высокого напряжения (до 10000?В). Промышленные испытания электронасосов показали полную надежность погружных двигателей как на глубине 5250 м ниже поверхности океана, так и в экспериментальном батискафе на глубине 10000 м. Межремонтный ресурс электронасосов был равен 6–8 тыс. часов непрерывной работы, а полный срок службы составляет от одного до двух лет.

Читайте также:  Чем полезен алоэ и как приготовить

Технологии добычи полезных ископаемых на дне океана

Технологии добычи полезных ископаемых на дне океана

Работа погружных насосов в гидравлической системе транспортировки марганцевых конкреций дала возможность оценить эффективность их применения для нужд металлургической промышленности. В третьем тысячелетии человечество не сможет долго обходиться без использования огромных сырьевых ресурсов океана. Проверенное на надежность насосное оборудование фирмы KSB создало условия для промышленного освоения рудных месторождений на дне мирового океана.

Журнал “Горная Промышленность” №2 1999

Источник