Самодельный дирижабль на 3 тонны полезной нагрузки

Самодельный дирижабль на 3 тонны полезной нагрузки thumbnail

Знаете зачем вообще говорить о дирижаблях? Потому, что масса, которую может перевозить даже один такой аппарат практически не ограничена, а вот для самолетов и других летательных аппаратов тяжелее воздуха – есть предел. Ведь с увеличением линейных размеров летательных аппаратов легче воздуха в n раз, архимедова подъемная сила увеличивается пропорционально объему, то есть в кубе (n3), а подъемная сила самолетов увеличивается пропорционально площади крыла, то есть в квадрате (n2). Масса же что тех, что других аппаратов увеличивается с увеличением линейных размеров приблизительно в кубе. То есть отношение масса-сила подъема для аппаратов тяжелее воздуха относиться как куб-квадрат, в то время для аппаратов легче воздуха, как куб-куб.

Стало быть, самолеты имеют ограничение по линейным размерам и значит и по грузоподъемности, а дирижабли таких ограничений не имеют!

Я уже писал о вакуумных дирижаблях, которые могут работать без использования постоянного расхода рабочего тела (водорода, гелия, азота), а только лишь  на подводе энергии.

Коллективно, читатели моих статей пришли к выводу, что такой дирижабль пока невозможен. К сожалению сейчас и близко нет материалов такой прочности, которые позволят построить такое техническое чудо.

Может есть другие варианты?

По сравнению с другими ЛА дирижабли имеют несколько серьёзных преимуществ:      

        – В принципе достижимы более высокая надёжность и безопасность, чем у самолетов и вертолетов. 

        – Практически неограниченные грузоподъёмность и дальность беспосадочных перелётов.

        – Долгое время нахождения в воздухе (недели).

        – Размеры внутренних помещений и комфорт для пассажиров могут быть очень велики.

         – В отличии от самолётов, дирижаблю не требуются взлётно-посадочные полосы.

Ресторан на «Гинденбурге»

Конечно, наряду с достоинствами дирижабли имеют и некоторые недостатки:

        – Огромные размеры, стало быть очень большие размеры требуемых ангаров (эллингов), сложность хранения и обслуживания на земле.

        – Сложность приземления из-за низкой манёвренности.

        – Относительно малая скорость по сравнению с самолётами и вертолётами (как правило до 160 км/ч) и низкая маневренность — в первую очередь из-за малой эффективности аэродинамических рулей в канале курса при малой скорости полёта и из-за малой продольной жёсткости оболочки.

        – Большая парусность и зависимость от погодных условий (особенно при сильном ветре).

        – Низкая надёжность и долговечность оболочки.

        – Дороговизна использования гелия, как наполнителя или опасность водорода.

Также рассматривался как наполнитель азот, но его подъемная сила невелика.

Некоторые проблемы, такие как:

1) Низкая надёжность и долговечность оболочки.

2) Дороговизна использования гелия, как наполнителя или опасность водорода.

были решены в конструкции цельнометалического дирижабля Циолковского:

Циолковский предлагал построить огромный даже по сегодняшним меркам — объёмом до 500 000  м³ — дирижабль жесткой конструкции с металлической обшивкой (для сравнения, самые крупные жесткие дирижабли «Гинденбург» и «Граф Цеппелин II» имели объем всего лишь 200 000 кубометров).

В первую очередь изобретатель ставил целью избавиться от опасности взрыва. Проектный дирижабль наполнялся, подобно монгольфьеру, просто горячим воздухом, причем отдельной системы нагрева не существовало: забираемый снаружи воздух грелся посредством контакта с отработавшими газами мотором дирижабля.

Воздух нагревался проходя по змеевикам, нагреваемым выхлопными газами. Оболочка наполнялась горячим воздухом, температура которого регулировалась для изменения высоты подъёма дирижабля.

Естественно, нужно было обеспечить прочность конструкции — этому служила гофрированная поверхность металлической оболочки дирижабля. Более того, гофры не только повышали прочность, но также работали «линиями сгибов»: особая система стягивающих вант позволяла изменять объем внутреннего пространства дирижабля для обеспечения постоянства подъемной силы, не зависящей ни от атмосферного давления, ни от температуры окружающей среды, ни от других факторов.

Подобные изменения, в том числе удлинение и укорачивание дирижабля, могли проводиться прямо в полете.

Так затрачивая ничтожное количество энергии на изменение подъемной силы, можно было бы менять высоту полета дирижабля над землей и выбирать воздушные течения, исходя из их карты на разных высотах, которые помогали бы отнести этот аппарат в нужное место в нужное время уменьшая тем самым расход топлива. Опускать такой аппарат на землю нужно только для выгрузки груза, заправки топливом и регламентных работ.

Да, это был самый перспективный проект дирижабля того времени, но слишком футуристичный для него!

Да, чтобы вы не думали, что цельнометалические дирижабли  – это фантастика и огромные куски железа не могут летать по воздуху, можно обратиться к истории дирижаблей и увидеть, что несмотря на то, что жестких дирижаблей с металлической (а точнее, алюминиевой) внешней оболочкой во всем мире было построено всего несколько штук  и ни один не стал «рабочей лошадкой», выйти за рамки испытаний все же сумел единственный летавший дирижабль такого типа — ZMC-2.

Оболочка дирижабля представляла из себя фольгу сплава “альклэд” толщиной 0,24 мм, обтягивающую жесткие металлические шпангоуты.
Объем 5.660 куб.м, длина 44,8 м, диаметр 15,8 м. Наполнен гелием.

Внутри него:

Фото из технологического альбома “USA Metalclad Airship”. – USA, 1929 год.

Да, единственный дирижабль с металлической обшивкой, который поднимался в воздух, — это американский ZMC-2. Но он летал и это факт!

Zeppelin Metal Clad-2 по прозвищу «Жестяной пузырь», сконструированн  в 1929 году. Его построила Детройтская компания Aircraft Development Corporation, и 20 августа 1929 года он отправился в свой первый полет. Маленький аппарат длиной всего 45 м должен был стать опытной моделью: в случае успеха компания ADC планировала создать 150-м дирижабль, который превзошел бы все, построенные на тот момент в мире. 

Дюралюминиевая обшивка крепилась на алюминиевом же каркасе и служила прямым контейнером для гелия. Конструкция была вполне удачной: дирижабль развивал скорость до 110 км/ч, хотя везти мог не более 340 кг полезного груза, включая экипаж из двух человек. В движение машину приводили два 300-сильных двигателя. После первого успешного полета дирижабль передали для испытаний в US Navy.

Но в Detroit Aircraft Corporation (переименованной ADC), да и в ВВС США, не учли одного фактора — обрушившейся на США Великой депрессии. Ни денег, ни необходимости строить последующие дирижабли не было — и проект свернули. В 1931 году Detroit Aircraft Corporation обанкротилась. «Пузырь» эксплуатировался вплоть до 1941 года, налетав более 2200 часов в 752 полетах, и был разобран на металл в апреле 1941 года.

Эта история дает подтверждение тому, что цельнометалические дирижабли возможны!

Главный недостаток авиационного транспорта – высокая стоимость перевозки пассажиров и грузов. За год в мире посредством самолетов и вертолетов перевозится 25 миллиона тонн на среднее расстояние 3.000 км, что составляет менее 0,1% от общего грузооборота! Отсюда вывод: за перевозку грузов по воздуху государство и бизнес готовы платить только в исключительных случаях.

Наименьший расход топлива на транспортировку 1 тонны на расстояние в 1 км. (1 тонно-километр) имеют водный, трубопроводный и железнодорожный транспорт. В расчете на тонно-километр они расходуют менее 10 грамм условного топлива (1 гут=0,68 г керосина). Автомобильный транспорт в 10-15 раз хуже (100 гут/т*км). Самолеты в 30-100 раз хуже (200-1.000 гут/т*км), вертолеты 100-300 раз(1.000-3.000 гут/т*км).

Выделение_1041.pngПо расчетам, большие дирижабли от 150.000 до 300.000 м3 имеют топливную эффективность как автомобильный транспорт, а сверхбольшие дирижабли, объемом свыше 300.000 м3,  имеют топливную эффективность меньше автомобильного в 3-4 раза, то есть находятся между автомобильным и водным транспортом.

Главная проблема дирижабля Циолковского состояла в том, что в нем, в качестве подъемной силы, использовался горячий воздух, подъемная сила которого при небольшом нагреве невелика.

С другой стороны водород дешев, но взрывоопасен. Гелий достаточно дорог и как одноатомный газ обладает повышенной проницаемостью, т.е. раньше 15% газа терялось ежемесячно. Да, сейчас разработаны материалы с очень низким уровнем гелиопроницемости 0,5-1 л/сут*кв.м., что позволяет ограничиться незначительным пополнением несущего газа в летательный аппарат 2-10% в год от первоначального объема.

Гелий дорогой газ, вместе с тем затраты на гелий в общих эксплуатационных расходах дирижабля составляют весьма незначительную часть – от 1 до 3%. Главная проблема гелия не столько его дороговизна, сколько не масштабируемость его производства, если дирижабли на гелии начнут производится массово. Так например в самом крупном производителе гелия – США из-за истощения его месторождений добыча падает на 5-6% в год и они разрешили использовать газ из правительственных хранилищ.

Выделение_1040.png

Вообщем проблема до сих пор толком не решена – гелий дорог и производство его не масштабируемо, а водород опасен. (Сейчас разрабатываются ингибиторы детонации водорода, но его горения они не предотвращают.)

Правда, запасы гелия в России довольно значительны:

и возможности добычи тоже велики:

Но сомнительно, что его хватит для создания флота дирижаблей на гелии.

Плюс же нагретого воздуха в том, что его температура существенно сказывается на удельной подъемной силе теплового дирижабля.

Таблица 6. Характеристики удельной подъемной силы нагретого воздуха при различных температурах и высотах полета. 

Выделение_1036.png

Применение воздуха,нагретого до 600°С может создать удельную подъемную силу, составляющую 0,7-0,8 от величины для водорода и гелия. Подъемная сила 1 м3 водорода у земной поверхности равна приблизительно 1,15 кг на 1 м3 , а более тяжелого, но безопасного, гелия – 1 кг на 1 м3.  Чтобы обычный воздух заполучил подъемную силу равную 1, 2 кг (то есть превзошел водород) на 1 м3, нужно его нагреть до 1.000 С0.

Таблица 7. Удельная подъемная сила и плотность водорода и гелия при различных температурах на высоте Н = 0 м при=15°С

Выделение_1037.png

Еще таблица:

Выделение_1038.png

В отличие от воздуха, легкие газы (водород,гелий) при нагреве незначительно увеличивают свою удельную подъемную силу (рис 7.1).

Выделение_1039.pngНапример,при нагреве водорода от 50°С до 400°С эта  величина увеличивается приблизительно на 3%.

Температура нагретого воздуха существенно сказывается на удельной подъемной силе максимальная допустимая величина температуры зависит от конструктивных особенностей АЛА, примененных материалов и способа подогрева воздуха. Максимальной допустимой величиной температуры нагретого воздуха применительно к конструкциям термодирижаблей в настоящее время можно считать величину – 600°С. При развитии новых материалов максимальная допустимая температура будет повышаться. Если новые материалы смогут выдерживать 1.000 С0, то подъемная сила горячего воздуха превзойдет подъемную силу водорода!

Также, проблема горячего воздуха в регулировании плавучести дирижабля еще состоит в том, что достаточно перестать подогревать горячий воздух, чтобы аппарат потяжелел. Так что подогревать приходится постоянно, ведь большая площадь цельнометалического баллона и высокая теплопроводность металла приводило к тому, что горячий воздух внутри быстро охлаждался, чтобы поддержать подъемную силу надо постоянно тратить энергию на его обогрев.

А что было бы, если  оболочка такого дирижабля при сохранении ее прочности и герметичности обладала к тому же близкой к нулевой теплопроводностью?

Чтобы раз нагрев воздух в газовых баллонах можно было бы не тратить на это энергию или тратить ее совсем мало?

Сейчас такой теплоизолятор уже создан – он называется аэрогель!

При ничтожно малом весе, его теплопроводность еще ниже:

Наиболее распространены кварцевые аэрогели, по плотности среди твердых тел они превосходят лишь металлические решетки на основе никеля, чья плотность может достигать — 0,9 кг/м3, что на одну десятую меньше лучших показателей плотности аэрогелей — 1 кг/м3.

В воздушной среде при нормальных условиях плотность такой металлической микрорешётки равна 1,9 кг/м3 за счёт внутрирешёточного воздуха. Это в 500 раз меньше плотности воды и всего в 1,5 раза больше плотности воздуха.

Еще лучше показатели у аэрографита. Аэрографит обладает плотностью около 0,2 миллиграмма на кубический сантиметр, опережая по этим показателям аэрогели НАСА с плотностью 1 миллиграмм на кубический сантиметр, а также последнего рекордсмена, считавшегося наилегчайшим, материала на основе никеля с плотностью 0,9 миллиграмма на кубический сантиметр.

Впрочем ладно! Главное это то, что если ученные и технологи доведут себестоимость этих материалов до адекватной цены, то совместив идею, которая была высказана в начале прошлого века, с современными материалами, можно возродить время прекрасных небесных гигантов.

Что же до безопасности полета, то современные дирижабли обладают естественной безопасностью. 

Существует ТРИ основных причины гибели небоевой гибели дирижаблей:
1. Применение водорода – пожар
2. Отсутвие точного метепрогноза и из за этого – полет в условиях запрещенных РЛЭ
3. Попытка стоянки при неблагоприятных погодных условиях
ВСЕ три опасны и для самолетов и все три – современным дирижаблям не грозят!

P.S По этому вопросу мне особенно важно мнение людей с инженерным образованием.

Источник

В наши дни человечество находит в летательных аппаратах – дирижаблях все больше плюсов и выгод. Дирижабль – это управляемый самодвижущийся аэростат. В отличие от обычного воздушного «шара, который летит» исключительно по направлению ветра и может маневрировать только по высоте в попытке поймать ветер нужного направления, дирижабль способен двигаться относительно окружающих воздушных масс в направлении, выбранном пилотом. Для этой цели летательный аппарат оснащен одним или несколькими двигателями, стабилизаторами и рулями, а также имеет аэродинамическую («сигарообразную») форму. В свое время дирижабли «убила» не столько череда ужаснувших катастроф, сколько авиация, развивавшаяся в первой половине ХХ века сверхбыстрыми темпами.

Дирижабль тихоходен – даже самолет с поршневыми двигателями летает быстрее. Разгонять дирижабль до самолетных скоростей мешает большая парусность корпуса – сопротивление воздуха слишком велико. Проигрывая авиации в скорости, управляемые аэростаты при этом имеют ряд важных преимуществ, благодаря которым, собственно, возрождается дирижаблестроение.

Во-первых, сила, которая поднимает аэростат в воздух (известная всем со школьной скамьи сила Архимеда), совершенно бесплатна и не требует затрат энергии, в отличие от подъемной силы крыла, которая напрямую зависит от скорости аппарата, а значит, от мощности двигателя. Дирижаблю двигатели нужны в основном для перемещения в горизонтальной плоскости и маневрирования. Поэтому летательные аппараты такого типа могут обходиться моторами значительно меньшей мощности, чем потребовались бы самолету при равной величине полезной нагрузки.

Во-вторых, по сравнению с крылатой авиацией это экологическая чистота дирижаблей

(в наше время чрезвычайно важно).

В-третьих – практически неограниченная грузоподъемность дирижаблей. Грузоподъемность самолетов (вертолетов) имеет ограничения по прочностным характеристикам конструкционных материалов. Для дирижаблей же таких ограничений нет. Полезная нагрузка 1000 т – не фантастика. Дирижабль может длительное время находиться в воздухе, им не требуются аэродромы с длинными взлетно-посадочными полосами и имеют большую безопасность полетов. Тихоходность можно отнести к достоинствам этих кораблей.

Конкурент вертолета

Россия – один из мировых центров возрождающегося дирижаблестроения. Лидер отрасли – группа компаний «Росаэросистемы». Сегодня в работе находятся два типа дирижаблей, созданных конструкторами «Росаэросистем».

Первый тип – это двухместный дирижабль AU-12 (длина оболочки 34 метров) Аппараты такой модели существуют в трех экземплярах, и два из них время от времени используются московской милицией для патрулирования МКАД. Третий дирижабль продан в Таиланд и применяется там в качестве рекламного носителя. Двухместный дирижабль АU-12 предназначен для подготовки пилотов-воздухоплавателей, патрулирования и визуального контроля автодорог и городских территорий с целью экологического мониторинга, контроля за чрезвычайными ситуациями и спасательных операций, охраны и наблюдения, рекламных полетов, качественной фото-, кино-, теле- и видеосъемки в интересах рекламы, телевидения, картографии.

Второй тип – AU-30 имеет более крупные габариты (длина оболочки 54 м) и, соответственно, большую грузоподъемность. Гондола AU-30 вмещает десять человек (двух пилотов и восемь пассажиров). Дирижабль планируется использовать для организации воздушных туров. Подобные туры проходят в Германии на дирижабле Zeppelin NT.

Пример промышленного использования дирижаблей – мониторинг состояния линий электропередач. Удобнее всего это делать с воздуха. В большинстве стран мира для такого мониторинга применяются вертолеты, однако у них есть серьезные недостатки. Помимо того что вертолет неэкономичен, у него еще и весьма скромный радиус действия – всего 150-200 км. Для России это слишком мало. Кроме того, вертолет в полете испытывает сильную вибрацию и сканирующее оборудование дает сбои. Движущийся медленно и плавно дирижабль идеально подходит для задач мониторинга. В настоящий момент одна из российских фирм, разработавших основанное на лазерных технологиях сканирующее оборудование, а также программное обеспечение к нему, использует два дирижабля AU-30. Дирижабль этого типа может применяться для мониторинга земной поверхности (в том числе в военных целях и картографирования).

Принципы полёта и управления дирижаблями.

Практически все современные дирижабли, относятся к мягкому типу, то есть форма их оболочки поддерживается изнутри давлением подъемного газа (гелия). Для аппаратов небольших размеров жесткая конструкция не эффективна – уменьшает полезную нагрузку из-за веса каркаса. Несмотря на то что дирижабли и аэростаты относят к классу аппаратов легче воздуха, многие из них, особенно при полной загрузке, имеют так называемый перетяж, то есть превращаются в аппараты тяжелее воздуха.

Это относится и к AU-12 и AU-30. Дирижаблю, в отличие от самолета, двигатели нужны в основном для горизонтального полета и маневрирования. И вот почему «в основном». «Перетяж», то есть разница между силой земного притяжения и архимедовой силой, компенсируется за счет небольшой подъемной силы, которая появляется, когда встречный поток воздуха набегает на имеющую специальную аэродинамическую форму оболочку дирижабля – в данном случае она работает как крыло. Стоит дирижаблю остановиться – и он начнет опускаться к земле, ведь архимедова сила не полностью компенсирует силу притяжения.

Дирижабли AU-12 и AU-30 имеют два режима взлета: вертикальный и с небольшим пробегом. В первом случае два винтовых двигателя с переменным вектором тяги переходят в вертикальное положение и таким образом отталкивают аппарат от земли. После набора небольшой высоты они переходят в горизонтальное положение и толкают дирижабль вперед, в результате чего возникает подъемная сила. При посадке двигатели вновь переходят в вертикальное положение и включаются на реверсивный режим. Теперь дирижабль, напротив, притягивается к земле. Такая схема позволяет преодолеть одну из главных проблем эксплуатации дирижаблей в прошлом – сложность со своевременной остановкой и точным причаливанием аппарата. Раньше приходилось буквально отлавливать за спущенные вниз тросы и закреплять у земли. Причаливающие команды насчитывали в те времена десятки и даже сотни человек.

Маневрирование по высоте пилот осуществляет, в частности, меняя тангаж (угол наклона горизонтальной оси) дирижабля. Этого можно добиться как с помощью закрепленных на стабилизаторах аэродинамических рулей, так и путем изменения центровки аппарата. Внутри оболочки, накачанной находящимся под небольшим давлением гелием, находятся два баллонета. Баллонеты – это мешки из воздухонепроницаемой материи, в которые нагнетается забортный воздух. Управляя объемом баллонета, пилот изменяет давление подъемного газа. Если баллонет раздувается, гелий сжимается и плотность его растет. При этом архимедова сила падает, что приводит к снижению дирижабля. И наоборот. При необходимости можно перекачивать воздух, например, из носового баллонета в кормовой. Тогда при изменении центровки угол тангажа примет положительное значение и дирижабль перейдет в кабрирующее положение.

Направление, в котором работают отечественные дирижаблестроители – это создание тяжелых грузопассажирских дирижаблей. Как уже говорилось, для дирижаблей ограничений по грузоподъемности практически не существует, а потому в перспективе могут быть созданы настоящие «воздушные баржи», которые будут способны перевозить по воздуху почти все что угодно, включая сверхтяжелые негабаритные грузы Причем именно в этом сегменте дирижаблестроения должна произойти маленькая революция. Впервые за многие десятилетия в воздух поднимется дирижабль, выполненный по жесткой схеме. Подъемный газ будет помещаться в мягких баллонах, жестко прикрепленных к каркасу, укрытому сверху аэродинамической оболочкой. Жесткий каркас добавит дирижаблю безопасности, так как даже в случае серьезной утечки гелия аппарат не утратит аэродинамическую форму.

Геостационарный стратосферный дирижабль «Беркут» другой интересный проект, по которому в группе компаний «Росаэросистемы» проведены НИОКР. В основе идеи – свойства атмосферы. На высоте 20-22 км ветровой напор относительно невелик, причем ветер имеет постоянное направление – против вращения Земли. В таких условиях довольно легко с помощью тяги двигателей зафиксировать аппарат в одной точке относительно поверхности планеты. Стратосферный геостационар можно использовать практически во всех областях, в которых сейчас применяются геостационарные спутники (связь, передача теле- и радиопрограмм и т.д.). При этом дирижабль «Беркут» будет, разумеется, существенно дешевле любого космического аппарата. Кроме того, если спутник связи выходит из строя, ремонту он уже не подлежит. «Беркут» же в случае любых неполадок всегда можно будет спустить на землю, чтобы провести необходимую профилактику и ремонт. И наконец, «Беркут» – это абсолютно экологически чистый аппарат. Энергию для двигателей и ретранслирующей аппаратуры дирижабль возьмет от солнечных батарей, размещенных на верхней части оболочки. В ночное время питание будет производиться за счет аккумуляторов, накопивших электричество в течение дня.

Тепловые дирижабли.

Основная сфера применения тепловых дирижаблей – аэрошоу и спорт. И именно в спорте России принадлежит высшее достижение. 17 августа 2006 года пилот Станислав Федоров достиг на тепловом дирижабле российского производства «Полярный гусь» высоты 8180 м.

Спортивные дирижабли могут найти практическое применение. «Полярный гусь», поднявшись на высоту 10-15 км, сможет стать своего рода первой ступенью системы космических запусков. При космических стартах значительное количество энергии тратится именно на начальной стадии подъема. Чем дальше от центра Земли находится стартовая площадка, тем больше экономия топлива и тем большую полезную нагрузку удается вывести на орбиту. Именно поэтому космодромы стараются размещать ближе к экваториальной области, чтобы выиграть (за счет приплюснутой формы Земли) несколько километров.

Конструкции российских дирижаблей

В дирижаблестроении выделяются три основных типа конструкции: мягкая, жесткая и полужесткая. Практически все современные дирижабли относятся к мягкому типу.

Многоцелевой дирижабль Au-30 (многоцелевой патрульный дирижабль объемом более 3000 м3) предназначен для выполнения полетов в течение продолжительного времени, в том числе на малой высоте и с малой скоростью.

Двухместный дирижабль АU-12 имеет крейсерская скорость 50-90 км/ч, мощность маршевого двигателя 100 л.с., максимальная дальность полета 350 км, максимальная высота полета 1500 м.

Дирижабль «Беркут» внутри оболочки имеет пять тканых емкостей с гелием. У поверхности земли закачанный в оболочку воздух будет сдавливать емкости, повышая плотность подъемного газа. В стратосфере, когда «Беркут» окажется в окружении разреженного воздуха, воздух из оболочки будет откачан и емкости под давлением гелия раздуются. В результате плотность его упадет и, соответственно, возрастет архимедова сила, которая будет удерживать аппарат на высоте.

«Беркут» разработан в трех модификациях – для высоких широт (HL), для средних широт (ML), для экваториальных широт (ET). Геостационарные характеристики дирижабля позволяют осуществлять функции наблюдения, связи и передачи данных над территорией площадью более 1 млн. км2.

Даже дирижабль из червонного золота

даст приличный процент прибыли».

Константин Циолковский

Дирижабли вновь заинтересовали многие крупные компании, как из числа покупателей, так и производителей. По данным западных экспертов мировая потребность в этих воздушных судах различной грузоподъемности и назначения составляет около 1300 единиц. Спектр поставленных задач:

– трансляции сигнала со стратосферной высоты;

– транспортировка грузов на дальние и сверхдальние расстояния;

– туризм;

– различные патрулирования (мониторинг).

На сегодняшний день мировую отрасль дирижаблестроения представляют около 100 компаний. Современные дирижабли лишены многих недостатков своих предшественников:

– заполняются отнюдь не взрывоопасным водородом, а пожаробезопасным гелием;

– существенным усовершенствованиям подвергся сам корпус(баллон), включая «обшивку» и несущую конструкцию:

– используют металлические фермы из авиационных сплавов;

– оболочку делают из специальной ткани на основе лавсана;

– для покрытии применяется двуокись титана (делающая баллон почти абсолютно радиопрозрачным);

– высокотехнологичная сборка оболочки (для сварки применяется высокочастотный ток) делает дирижабль судном с огромным ресурсом надежности и безопасности.

– мотоблок состоит из одного или нескольких двигателей – как электрических, так и дизельных;

– маршевые двигатели «тянут» дирижабль в заданном направлении»;

– управление маневрированием, в том числе и в режиме зависания, осуществляют рулевые двигатели;

– направление вектора тяги свободно изменяется на вертикальное;

– бортовые системы позволяют успешно пилотировать корабль как днем, так и ночью;

– дирижаблю не страшны сильные ветры и опасность обледенения.

– среднее время непрерывного полета транспортного дирижабля составляет несколько суток, при скорости 100-130 км/час и преодолеть расстояние 3-5 тыс. км. ( с дозаправкой – 30 суток и более);

– дирижаблю не требуется аэродрома или посадочной площадки (аппарат мягко причаливает к мачте).

Сегодня аэростатные технологии развиваются в трех направлениях:

– легкие дирижабли малого и среднего объема;

– транспортные дирижабли большой и сверхбольшой грузоподъемностью;

– стратосферные дистанционно управляемые аппараты легче воздуха.

Перспективный рынок.

На сегодняшний день мировую отрасль дирижаблестроения представляют около 100 компаний и 42 больших дирижабля.

Анализируя основные тенденции в отрасли, специалисты отмечают эффективное решение проблемы транспортных коммуникаций может быть найдено только в связи с развитием экономически целесообразных и надежных систем грузоперевозок. Уже сегодня нужна действенная система транспортировки сырьевых ресурсов в Восточной Сибири и Приморском крае, включая Чукотку, Камчатку, остров Сахалин.

Для использования средств транспортной авиации необходимо создание аэродромов, инфраструктурных объектов и решение целого ряда других капиталоемких задач. Вертолетная техника в современных условиях также оказывается достаточно дорогим решением – при низкой массовой отдаче у вертолетов большой расход топлива. Сегодня они широко используются только по причине отсутствия реальных альтернатив.

Проекты грузовых дирижаблей, сравнимых и даже превосходящих транспортную авиацию, постоянно обсуждались и давно, и сейчас. Еще в 1970-1980 гг. в СССР и за рубежом развернулась бурная дискуссия о целесообразности использования дирижабельно-транспортной коммуникации. Однако споры затихли сами собой, и к ним вернулись только в начале нового столетия. Но теперь конструкторы разных стран предлагают вполне жизненные и обусловленные конъюнктурой рынка проекты.

Дирижабли обладают целым комплексом только им присущих свойств:

– высокий коэффициент грузоподъемности, дальности и продолжительности полета;

– возможность вертикального взлета и посадки;

– работа в режиме длительного зависания и безопасность при эксплуатации даже в случае отказа силовой установки или системы управления;

– относительно малый расход топлива;

– незначительное воздействие на окружающую среду (весомый аргумент активной эксплуатации).

– способность перманентно без причаливаний от мачты к мачте), без дозаправок и «пауз», работать в небе трое и более суток (предел вертолета подобного класса составляет только 6 часов);

– летный час стоит $150-200 (для вертолета- от $400 до $1000).

Сегодня мировая потребность в дирижаблях различной грузоподъемности и назначения, (данные западных экспертов) составляет около 1300 единиц.

Использование дирижаблей[9]:

– лесоразработки;

– разгрузка судов;

– монтаже линий электропередач;

– доставке и сборке оборудования (части нефтяных платформ, оборудование для геологоразведки).

Лидеры по разработке и внедрению дирижаблей являются:

– Zeppelin Luftschifftechnik (Германия);

– Advanced Technology Group (ATG, Великобритания);

– НПО «РосАэроСистемы» (Россия).

Дирижабли в России.

Российское дирижаблестроение, хотя и не представило столь впечатляющих образцов воздухоплавательной техники, как в Германии, Англии или США, но уже вполне уверенно заявило о себе как о конкурентоспособном производителе. Освещавшие презентацию совместного российско-французского проекта СМИ в один голос отмечали, что создаваемые НПО «РосАэроСистемы» образцы соответствуют всем международным стандартам и не уступают западному производителю. Не случайно и то, что от французской стороны поступил заказ на создание еще 10 оболочечных систем. То есть проектные разработки российских конструкторов представляют интерес, на них растет спрос на мировом рынке.

Отечественные дирижабли создаются на аэрокосмических и оборонных предприятиях в рамках конверсионных программ, и, даже по самым скромным расчетам, на 30-40% дешевле западных систем такого же класса. Но российские аппараты не уступают зарубежным ни в качестве, ни в надежности, ни в безопасности, ни в долговечности.

В России уже создан и работает целый ряд патрульных дирижаблей, а аванпроект многофункционального модульного дирижабля грузоподъемностью 3,5 тонны (МД-900) уже рассматривается на предмет реализации инвесторами, так же обстоит дело и с рядом других систем.

Завершена работа по проектированию дирижабля новейшего поколения транспортных систем. Здесь речь идет о проекте цельнометаллического дирижабля-гиганта грузоподъемностью 180 тонн, образно выражаясь, – на три «пульмановских» вагона. В отличие от германского CL-160, продукта компании CargoLifter, ДЦ-Н1 стал результатом научно-экспериментальных работ, начатых еще в СССР.

https://investinnoprom.ru/gruzovye-dirizhabli.php

Источник