Районы добычи полезных ископаемых со дна
Ученые из Университета Дьюка (Duke University, США) призвали обратить внимание на то, как подводная добыча полезных ископаемых может отразиться на целостности экосистемы океанов. Эксперты высказали опасения, что из-за разработки подводных залежей полезных ископаемых могут пострадать редкие малоизученные виды морских обитателей, пишет издание The Verge.
Сейчас активной добычей полезных ископаемых со дна океана занимается Япония. В районе самого крупного острова японского архипелага Рюкю, Окинава, на глубине 1,5 км ниже уровня моря находится “месторождение” драгоценных металлов. Там действуют гидротермальные источники, так называемые черные курильщики, через которые в океан попадает высокоминерализованная горячая вода, содержащая частицы металлов. При контакте с холодной водой они оседают на дне океана. Глубоководная горнодобывающая промышленность страны получает на этом месторождении цинк, золото и другие металлы, которые используют в производстве смартфонов.
Гидротермальные источники были обнаружены в 1970-х гг. и с тех пор остаются объектами пристального внимания ученых. Территорию рядом с ними населяют различные живые сложные существа, о которых практически ничего не известно. Они существуют на основе хемосинтеза (организмы для построения своего тела используют неорганические вещества почвы, воды и воздуха). В восточной части Тихого океана вокруг гидротермальных источников живут огромные черви, а в юго-западной части – два уникальных вида улиток. Возле “черных курильщиков” у Антарктиды живут крабы-йети (Kiwa hirsuta), получившие свое имя из-за внешнего вида – они белые и полностью покрыты ворсинками. Это не волосы в привычном понимании, а перистые щетинки, в которых живут бактерии, очищающие воду из источников от содержащихся в них ядовитых веществ. Есть мнение, что этими же бактериями питаются крабы.
“Там встречается много странного и удивительного. Это самое близкое соприкосновение человечества с чужеродными формами жизни”, – считает эколог, профессор Университета Дьюка Эндрю Талер (Аndrew David Thaler).
Добыча полезных ископаемых может поставить под угрозу существование уникальных видов живых существ, поскольку разработка предполагает измельчение породы для доставки ее на поверхность. “Иного способа нет. Что бы там ни добывалось, все живое уничтожается”, – добавляет Талер.
Восстановление “черных курильщиков”
По словам эколога, “черные курильщики” умеют восстанавливаться. Так, из опыта наблюдений Талер знает, что после извержений подводных вулканов источники постепенно восстанавливаются и вновь начинают функционировать спустя примерно десятилетие. Однако, как отмечает Синди Ли ван Довер (Cindy Lee Van Dover), профессор Университета Дьюка, неизвестно, какой объем разрушений смогут выдержать отверстия гидротермальных источников во время добычи полезных ископаемых.
Кроме того, источники содержат токсичные химические вещества – свинец и мышьяк. Неизвестно, что будет с окружающим их животным миром и ближайшими прибрежными зонами, если случится авария при добыче и произойдет разлив.
Регулирование работ на дне
За тем, как ведутся подводные разработки полезных ископаемых, следит Международный орган по морскому дну (International Seabed Authority, ISA) – организация, созданная на основании Конвенции ООН по морскому праву. ISA выдала 25 контрактов странам на подводную разведку полезных ископаемых. Никаких крупных разработок пока не ведется, поскольку организация еще не выяснила до конца, как именно глубоководная добыча влияет на природу. ISA взяла на себя обязательство к 2020 г. разработать кодекс экологических нормативов разработки полезных ископаемых. Как предположило издание The Verge, к 2025 г. в океане могут появиться крупные разработки подводных месторождений.
Талер убежден, что человечество должно сделать все возможное, чтобы защитить гидротермальные источники, поскольку они могут послужить источниками уникальных знаний о планете и природе. “Странные существа живут в абсолютной темноте, среди токсичных веществ. Глубоководный мир – наше космическое пространство. Но оно полно живых существ, которые живут вопреки всему, бросая вызов нашему восприятию жизни”, – говорит Талер.
Материал предоставлен проектом “+1”.
Согласно последнему докладу в июле 2018 года, Международный союз охраны природы и природных ресурсов (МСОП) предупреждает, что с каждым годом добыча полезных ископаемых с морского дна оказывает катастрофические последствия для морских обитателей.
На дне мирового океана содержится огромное количество уникальных и необычных видов животных, также там своя исключительная среда обитания и экосистема. Помимо этого, мировой океан обладает гигантскими запасами полезных ископаемых.
Человечеством в 1970-1980 предпринимались попытки добывать эти ресурсы с морского дна. Но юридические неопределенности, огромные финансовые затраты в совокупности с низкими ценами на металлы постоянно тормозили данный процесс добычи.
В настоящее время юридические пробелы практически устранены, а технология морской добычи усовершенствована и быстро развивается.
Суть доклада предполагает усовершенствовать существующую нормативно – правовую базу, которая позволит избежать долгосрочного ущерба морской среде на основе высококачественных оценок воздействия на окружающую среду и стратегий смягчения негативных последствий.
Все это в свою очередь должно основываться на комплексных базовых исследованиях для улучшения понимания глубоководных районов, которые еще недостаточно изучены или не изучены вообще.
По мнению экспертов МСОП, разрабатываемый в настоящее время «Кодекс о недрах и недропользовании» не обладает достаточными сведениями о глубоководных районах.
Также отсутствует тщательная оценка экологических последствий при горных работах, которая необходима для обеспечения эффективной охраны жизни существ в глубоководных местах.
«Мы работаем в темноте», — утверждает Карл Густав Лундин, руководитель глобальной морской и полярной программы МСОП. Наше нынешнее понимание морских глубин не позволяет нам эффективно защищать существующую там жизнь от горных работ.
И все же сегодня контракты на разведку дна мирового океана предоставляются даже для тех районов, где локализуются очень уникальные виды. Эксплуатация полезных ископаемых с использованием современных технологий может навсегда разрушить богатую глубоководную жизнь, принося пользу лишь немногим и игнорируя будущие поколения.
Ещё одним фактором риска является постоянный рост коммерческого интереса к глубоководным месторождениям полезных ископаемых в результате прогнозируемого роста спроса на медь, алюминий, кобальт и другие металлы.
Эти ресурсы используются для производства высокотехнологичных устройств, таких как смартфоны, планшеты, солнечные панели, электрические аккумуляторные батареи.
Пока эмпирических данных о воздействиях на экосистему при глубоководной добычи мало, но потенциальные последствия вызывают беспокойство.
К ним ученые относят непосредственный физический ущерб морским местам обитания: вспахивание океанского дна при помощи техники (подобно вырубке леса) приводит к смешиванию первичного грунта с остальными донными отложениями на морском дне. Эти действия сделают воду мутной и могут привести к удушью обитателей. Дополнительное негативное воздействие оказывают:
- токсичное загрязнение в результате утечек и разливов;
- шум и вибрация, а также замусоривание акватории от горно-шахтного оборудования и надводных судов.
Уже в 2018 году Международный орган по морскому дну выдал 29 контрактов на разведку в глубоководных районах на условиях, обеспечивающих экологически чистую деятельность.
Ожидается, что коммерческая добыча в международных водах начнется не ранее 2025 года. Извлекать полезные ископаемые уже начали в национальных водах Японии в 2017 году. Также коммерческая добыча полезных ископаемых прогнозируется в 2020 году в Папуа-Новой Гвинее.
Кристина Гьерде (Kristina Gjerde) старший специалист МСОП по морским и полярным программам надеется, что разрабатываемые правила для коммерческой глубоководной добычи будут должным образом понятны и обсуждены на публике, а последствия подводных операций будут строго оценены.
Все меры предосторожности для защиты морской среды обязаны стать основной частью любых правил добычи полезных ископаемых, чего на данный момент в действительности не существует. В дополнение к этому, сложный и противоречивый мандат Международного органа по морскому дну потребует улучшения надзора со стороны международного сообщества для обеспечения надлежащей защиты мирового океана.
Колыма, № 12, 1969 год
Две трети нашей планеты покрывают моря и океаны. Человечество веками использует минеральные ресурсы суши, и лишь в последние годы начались работы по использованию морских месторождений. В морской воде растворены почти все химические элементы; на дне морей и океанов есть нефть, уголь, железо-марганцевые руды, фосфориты, уран, золото, олово, редкие и рассеянные элементы.
Наиболее развитые капиталистические страны успешно осуществляют подводную добычу полезных ископаемых, причем экономический эффект в 1,5—3 раза превышает показатели аналогичных работ на суше [2]. Добывают нефть со дна моря США, Англия, Голландия и другие страны, добыча угля проектируется Японией, добываются алмазы в ЮАР, рутил и цирконий — в Австралии, ГДР, Индии. Особо интересным для геологов и горняков Магаданской области является подводная добыча касситеритов из морских россыпей в Индонезии и Таиланде, Выдающийся ученый Ю. А. Билибин указывал на о-возможность наличия прибрежно-морских россыпей на побережьях Советского Союза, в частности, на Северо-Востоке [3J.
Морские россыпи разделяются по происхождению на две основные группы: образованные на суше и находящиеся сейчас под водой в результате трансгрессии (наступления моря) и собственно морские, образовавшиеся, при размыве морем коренных источников или вторичных отложений (кор выветривания, древних россыпей и т. п.). Есть россыпи морского происхождения, оказавшиеся на суше в результате регрессии (отступления) моря и перекрытые впоследствии материковыми осадками [1].
В последние годы в Советском Союзе начаты разведочные и добычные работы на прибрежно-морских россыпях Прибалтики (ильменит, рутил, циркон); считаются перспективными берега моря Лаптевых (там уже найдена россыпь касситерита в Ванькиной губе), Японского моря, остров Сахалин, Курильские острова, Камчатский полуостров [4].
Анализ геологического строения Северо-Востока, и в частности Чукотки, показывает, что пересечение золото- и оловоносных зон с береговой линией (как бы «погружение» металлоносных зон в море), сочетание трансгрессий и регрессий в истории развития региона, наличие кор выветривания, в которых при длительном химическом выветривании мощных минерализованных зон со слабыми содержаниями полезных ископаемых накапливались довольно высокие концентрации золота и олова, благоприятны для образования прибрежно-морских россыпей. Перспективным в этом отношении является почти все побережье Центральной и Восточной Чукотки, в первую очередь Чаунская, Валькаркайская и Ам- гуэмская низменности, районы мыса Биллингса и Кибера.
На перспективность берегов Северо-Востока не обходимость познания закономерностей отложения морских осадков и поисков морских россыпей указывалось на семинаре- совещании по методике и технике разведки полезных ископаемых дна морей и океанов, созванном по инициативе Министерства геологии РСФСР осенью 1967 г. в Клайпеде, а также на совещании по организации поисковых и разведочных работ на морские россыпи золота и олова, организованном СВГУ и проходившем в марте 1968 г. в Магадане с участием ведущих научно-исследовательских институтов страны — ВНИИмор гео, МГИ, НИИГА и др.
Теоретические предпосылки подтвердились и практическими находками чаунских геологов: в марте 1968 г. при бурении скважин колонковыми станками со льда Восточно-Сибирского моря в районе мыса Биллингса в 70 м от берега была найдена переотложенная россыпь касситерита с весовыми содержаниями золота. В мае—июне 1968 г. в Валькаркайской низменности при прослеживании аллювиальной россыпи р. Рывеем станками ударно-механического бурения была найдена россыпь золота мощностью 1,2—2,8 м с устойчивыми промышленными содержаниями, по предварительным данным, имеющая морское происхождение и расположенная вдоль береговой линии. Морские осадки охарактеризованы фаунистически и перекрыты позднейшими материковыми отложениями при регрессии моря. Россыпь предположительно имеет длину несколько километров и, по оценке В. Л. Сухорослова, Ю. А. Эсаулова и автора, сопоставима по запасам с наиболее интересными аллювиальными россыпями Чукотки.
Горнякам объединения «Северовостокзолото» нужно вплотную заинтересоваться добычей морских россыпей золота и олова, которые, несомненно, будут выявлены при широком ведении соответствующих геологоразведочных работ. На подводной добыче полезных ископаемых могут быть достигнуты высокие технико-экономические показатели: здесь, как правило, не требуется вскрышных работ, строительства подъездных путей, отвалов, хвостохранилищ, резко сокращаются подготовительные работы. Месторождения моря осваиваются гораздо быстрее, чем на суше, при значительно меньших удельных капиталовложениях [4]. Основным же является возможность резкого расширения сырьевой базы Северо-Востока по россыпному золоту и олову.
ЛИТЕРАТУРА
Аксенов А. А., Невесский Е. Н., Павлидис Ю. А., Щербаков Ф.А. Изучение процессов образования и захоронения современных прибрежных россыпей. Сборник «Геология россыпей». М., «Наука», 1965.
Безуглов Э. Кладовая Нептуна. «Правда», 17/VI, 1968.
Билибин Ю.А. Основы геологии россыпей. АН СССР, М, 1955.
Костин В.Н., Нурок Г.А. Первый опыт и перспективы подводной добычи полезных ископаемых со дна морей и океанов. «Горный журнал», 1968, № 2
-0+1
Просмотров статьи: 9349, комментариев: 6
- Содержание сайта
- Комментарии
- Главная страница
Подводная добыча полезных ископаемых, разработка месторождений полезных, ископаемых под водами Мирового океана.
Разработка поверхностных месторождений шельфа и ложа океана производится открытым способом через водную толщу. На поверхности шельфа (19% площади суши) и ложа океана (50% площади Земли) сосредоточены огромные минеральные ресурсы. Только в железомарганцевых конкрециях донных отложений Тихого океана запасы марганца прогнозируются в 2,4×1011т, кобальта — 2,8×109т, никеля — 9,4×109т, меди — 5,3×109т. На шельфе располагаются россыпные месторождения тяжёлых минералов и металлов.
Первые попытки освоения шельфа сделаны в 11 в. до н. э., когда финикийцы из отложений морских ракушек добывали сырьё для производства пурпурной краски. Позднее (6 в. до н. э.) на островах Полинезии велась разработка коралловых рифов для получения строительных материалов. В 3 в. до н. э. с глубины 4 м у о. Халка, в пролив Босфор, ныряльщики добывали медную руду. В конце 19 в. началось освоение россыпей золота, затем ильменита, рутила, циркона, монацита на побережье Австралии (1870), Бразилии (1884), Индии (1909). В 20-х гг. 20 в. была начата добыча олова из морских россыпей Индонезии, в 1963 — алмазов на шельфе Юго-Западной Африки. В начале 60-х гг. добывалась железная руда из россыпей залива Ариаке (Япония). В СССР работы по освоению морских россыпей были начаты в 1966 на шельфе восточной части Балтики, где добывались титано-цирконовые концентраты.
В 1973 свыше 70 дражных предприятий добывали из россыпей шельфа около 120—130 млн. м3 горной массы, при этом добыча оловянных концентратов из морских россыпей достигала 10% от мирового объёма добычи олова (без СССР), а стоимость добытых алмазов в отдельные годы составляла свыше 3% от общей стоимости добываемых алмазов.
В зависимости от горно-геологических и гидрометеорологических условий, глубины разработки и вида полезного ископаемого применяются различные технические средства (рис. 1), а также способы П. д. Разрабатываются россыпи преимущественно многочерпаковыми, гидравлическими и грейферными драгами. Для разработки железомарганцевых конкреций испытаны и строятся (1974) драги с гидравлическим подъёмом (эрлифт) и ковшами, закрепляемыми на бесконечном тросе.
Перспективы открытой П. д. на шельфе определяются её преимуществами по сравнению с разработкой месторождений суши: строительство дражных и др. технических судов на крупных судостроительных заводах исключает период строительно-монтажных работ на месторождении; значительно уменьшаются объёмы по вскрытию месторождений полезных ископаемых; исключается строительство подъездных путей, линий электропередач и жилых посёлков, а также отпадает необходимость отчуждения с.-х. земель и последующей их рекультивации.
Горные работы на шельфе затрудняются наличием волнений на водной поверхности, заносимостью выработок на дне моря, размывом отвалов, выемкой пород и их сбросом в среду жизнедеятельности морской фауны и флоры, а также необходимостью поддержания устойчивости береговых линий.
Основные направления научно-исследовательских работ по освоению шельфа в СССР: разработка методов геологических поисков и опробования морских россыпей шельфа с установлением их геолого-экономической оценки; разработка научных основ технологии подводной добычи полезных ископаемых в районах континентального шельфа и океанического ложа без ущерба для водных организмов; создание машин, производящих добычу и обогащение полезных ископаемых на всех глубинах шельфа.
Разработка месторождений недр Мирового океана осуществляется подземными горными выработками и буровыми скважинами.
П. д. из коренных месторождений по методам выемки руд полезного ископаемого мало чем отличается от добычи на суше (см. Подземная разработка полезных ископаемых). На большинстве подводных шахт стволы закладываются на суше, вследствие этого откаточные выработки имеют протяжённость в несколько км. Применяют вскрытие шахтных полей стволами с искусственных островов (например, шахта «Майке», Япония). Глубина заложения горных выработок под дном, гарантирующая их от затопления, зависит от свойств вышележащих пород и обычно равна 65—80 м. Разработка месторождений ведётся с закладкой выработанного пространства; проветривание морских шахт осуществляется через один ствол по трубам.
В 1974 эксплуатировалось 57 угольных шахт в Японии, Великобритании, Турции, на о. Тайвань, две железорудные шахты в Финляндии и Канаде, два оловянных рудника в Великобритании и СССР.
Наибольший объём П. д. приходится на добычу нефти и газа из недр Мирового океана. Перспективной является также добыча твёрдых полезных ископаемых геотехнологическими методами (см. Подземное выщелачивание, Подземное растворение). Например, годовая добыча серы с помощью расплавления на месторождениях Мексиканского залива превышает 600 тыс. т (1973).
К П. д. относят также извлечение полезных ископаемых из морской воды, основанное на физико-химических процессах выделения растворённых в ней солей, различных химических элементов, общий объём которых достигает 48 млн. км3 (в т. ч. около 2×1016т натрия, около 2×1015т магния, около 1,3×1014т брома).
С середины 19 в. из маточных рассолов поваренной соли во Франции начали получать бром. С 30-х гг. 20 в. начато промышленное извлечение из морской воды магния. В 1970 в СССР, США, Великобритании и др. странах работало свыше 100 предприятий по добыче хлористого натрия из морской воды с объёмом производства свыше 10 млн. т, магния 300 тыс. т и брома 75 тыс. т.
Технология извлечения химических элементов из морской воды предусматривает, как правило, их концентрацию, а затем, при взаимодействии насыщенного раствора с др. элементами, их получение в виде соединений (рис. 2).
Концентрация химических элементов в морской воде низкая (за исключением натрия, магния, брома), и потому их извлечение нерентабельно (1974). Перспективы в этом направлении связаны с увеличением объёмов опреснения морской воды. Из получаемых при этом попутных рассолов химических элементы можно эффективно извлекать на установках по адсорбционному обмену и экстракции. О правовых вопросах П. д. см. в ст. Шельф. См. также статьи Океан и Морская геофизическая разведка.
Лит.: Меро Д., Минеральные богатства океана, пер. с англ., М., 1969; Добыча полезных ископаемых со дна морей и океанов, М., 1970.
Г. А. Нурок. Ю. В. Бубис.
Рис. 2. Схема получения магния из морской воды: 1 — трубопровод для подачи морской воды; 2 — распределительный резервуар; 3 — устройство для гидрообработки; 4 — вторичный реактор; 5 — третичный реактор; 6 — первичный загуститель; 7 — ёмкость для хранения пресной воды; 8 — промывная установка; 9 — вакуум-фильтр; 10 — винтовой транспортёр; 11 — ёмкость для хранения загустелого Mg(OH)2; 12 — устройство для гидрообработки пресной воды; 13 — роторные сушильные печи.
Рис. 1. Технические средства подводной добычи полезных ископаемых.
Оглавление