Процесс обезвоживания при обогащении полезных ископаемых

Процесс обезвоживания при обогащении полезных ископаемых thumbnail

Обезво́живание (англ. dewatering, dehydrating; нем. Entwasserung f) — операции по удалению излишней влаги из материала, в частности, из продуктов обогащения полезных ископаемых.

Методы обезвоживания[править | править код]

Различают способы обезвоживания с использованием:

  • гравитационных сил — дренаж, осадка в воде и уплотнение осадка;
  • гравитационных сил и вибраций — грохочения;
  • центробежных сил — центрифугирования, сгущения в гидроциклонах;
  • перепадов давления — фильтрования;
  • тепловой энергии — термическая сушка, а также объединение обозначенных факторов.

Кроме того, используют обезвоживание методом механического срыва водной плёнки (обезвоживание эжектированием).

Результат обезвоживания и факторы, влияющие на процесс[править | править код]

В результате обезвоживания получают обезвоженный материал с влажностью:

  • при дренаже 20—30 % (иногда 5—10 %),
  • при сгущении 40—60 %,
  • фильтровании 7—15 % (иногда до 25 %),
  • механическом срыве влаги струёй воздуха 5—12 %,
  • осушении 0,5—7 %.

На процесс обезвоживания влияют свойства поверхности минералов, их минералогический и гранулометрический состав, содержание твёрдого компонента в пульпе, плотность твёрдой фазы, pH среды, температура пульпы и другие факторы. Наибольшее применение обезвоживание находит при обогащении полезных ископаемых в водной среде.

Классификация влаги и технологические возможности процессов обезвоживания[править | править код]

Влагу в продуктах обогащения в зависимости от энергии её связи с поверхностью минерала разделяют на:

  • гигроскопическую, которая удерживается благодаря адсорбционным силам;
  • плёночную, связанную с поверхностью молекулярными силами;
  • капиллярную, которая заполняет поры между частицами минерала и удерживается капиллярными силами;
  • гравитационную, которая заполняет все промежутки между частицами.

Современные механические процессы обезвоживания обеспечивают удаление гравитационной и частично капиллярной и адсорбционной влаги. При термической сушке возможно удаление всей влаги. Для интенсификации процессов обезвоживания используется агрегация (флокуляция, коагуляция, агломерация и т. д.) тонких частичек. Обезвоживание нефти проводится для удаления пластовой воды из продукции нефтяных скважин на нефтяных промыслах. Обезвоживание нефти основано на разрушении водонефтяных эмульсий (деэмульсация). Содержание воды в нефти после её обезвоживания (перед подачей в систему магистральных нефтепроводов) не должно превышать 1 %.

См. также[править | править код]

  • Водно-шламовое хозяйство

Литература[править | править код]

  • [www.mining-enc.ru/o/obezvozhivanie/ Обезвоживание] (статья) // Горная энциклопедия. Тома 1—5, М.: Советская энциклопедия, 1984—1991
  • Малая горная энциклопедия. В 3 т. = Мала гірнича енциклопедія / (На укр. яз.). Под ред. В. С. Белецкого. — Донецк: Донбасс, 2004. — ISBN 966-7804-14-3.

Некоторые внешние ссылки в этой статье ведут на сайты, занесённые в спам-лист.

Эти сайты могут нарушать авторские права, быть признаны неавторитетными источниками или по другим причинам быть запрещены в Википедии. Редакторам следует заменить такие ссылки ссылками на соответствующие правилам сайты или библиографическими ссылками на печатные источники либо удалить их (возможно, вместе с подтверждаемым ими содержимым).

Список проблемных доменов

Источник

Глава 1. Назначение и роль операций обезвоживания при обогащении полезных ископаемых

Обогащение полезных ископаемых в большинстве случаев производится в водной среде и на обогатительных фабриках наиболее распространены так называемые мокрые процессы обогащения, в которых раскрытие и разделение минеральных компонентов происходит в водной среде. К ним относятся мокрое измельчение с последующей гидравлической классификацией, большинство гравитационных и магнитных процессов, флотация, гидрометаллургическая переработка руд и концентратов. При измельчении и классификации вода служит транспортирующей и разделительной средой. Роль воды при гравитационном обогащении заключается в разделении смеси минеральных зерен по плотности в регулируемых потоках и в создании сред заданной плотности. Для обогащения слабомагнитных железных руд (гематитовых, мартитовых) основными являются мокрые гравитационные процессы – обогащение на отсадочных машинах, концентрационных столах, винтовых сепараторах.

Больших объемов воды требует промывка глинистых железных и марганцевых руд. Для магнетитовых руд преобладающим способом обогащения является мокрая магнитная сепарация. На углеобогатительных фабриках вода расходуется на промывку углей, для отсадки и флотации, а также для транспортирования шламов. Процесс пенной флотации, получивший в последние годы наиболее широкое распространение для обогащения различного минерального сырья, также осуществляется в водной среде.

В процессах обогащения вода в определенном соотношении к массе твердого материала проходит через весь технологический цикл обогатительной фабрики. Для получения наиболее высоких показателей разделения каждую технологическую операцию проводят при определенном отношении жидкого к твердому. Расход воды при обогащении полезных ископаемых зависит от геолого-минералогической характеристики исходного сырья и его обогатимости, от принятого процесса обогащения, сложности технологической схемы, конечной крупности получаемых продуктов. В среднем расход воды только на технологические нужды изменяется в пределах 3–6 м3 на 1 т обогащаемой руды и достигает 15–17 м3/т на фабриках с развитой гравитационной схемой. Такая вода называется технологической или производственно-технологической.

Вода является универсальным средством для транспортирования продуктов обогащения по трубопроводам и желобам, например, из операции в операцию, из аппарата в аппарат. Значительные объемы воды расходуются на транспортирование отвальных хвостов в хвостохранилища.

Кроме того, на обогатительных фабриках вода расходуется для охлаждения подшипников оборудования, в мокрых пылеуловителях для очистки дымовых газов сушильных отделений и воздуха от пыли, для смыва просыпей конвейеров, промывки оборудования, уборки помещений и т.п.

Выделяют также хозяйственно-питьевую или хозяйственно-бытовую воду, применяемую для питья, гигиенических целей, в душевых, коммунально-бытовых сооружениях, в системах отопления, для тушения пожаров и пр.

1.2. Назначение операций обезвоживания
и их классификация

В результате обогащения с использованием мокрых процессов продукты получаются сильно обводненными и в таком виде не могут быть отправлены на дальнейшую переработку, например, в металлургический передел. Так, флотационные концентраты могут содержать до 4 м3, а хвосты – до 10 м3воды на 1 т твердого. Кроме того, излишняя влага в концентратах удорожает их перевозку и хранение, уменьшает их сыпучесть, повышает вероятность смерзания в зимнее время. Поэтому для удаления избыточной влаги (воды) из полезного ископаемого и продуктов обогащения применяют ряд операций, называемых в общем случае обезвоживанием.

Обезвоживанием называют совокупность процессов удаления воды из обводненных продуктов обогащения.

Обезвоживание является заключительным этапом в технологической цепочке обогатительной фабрики, но от него во многом зависит эффективность всего горно-металлургического комплекса. Необходимость операций обезвоживания диктуется рядом причин. Во-первых, требованиями на влагу (кондициями) последующего передела концентрата – металлургического, химического и других производств. Для железорудных концентратов, наряду с массовой долей железа, влажность является показателем качества концентрата, так как существенно влияет на качество производимых окатышей и агломерата.

Содержание влаги в концентратах регламентируется ГОСТ и ТУ и должно быть в пределах:

– для магнетитовых концентратов на окомкование для получения офлюсованных окатышей – 9,5%;

– для магнетитовых концентратов на окомкование для получения неофлюсованных окатышей – 8,5%;

– для магнетитовых концентратов на агломерацию – 10–10,5%;

– для концентратов цветных металлов, поступающих в плавку, – 5–10%;

– уголь, идущий на коксование,– 7–8%;

– уголь, идущий на брикетирование,– 12–15%.

Соблюдение указанных требований обеспечивает снижение всех эксплуатационных расходов в дальнейшем переделе и повышение производительности агрегатов. Например, снижение влажности коксовой шихты на 1% обеспечивает увеличение производительности коксовых печей на 5%.

Во-вторых, обезвоживание продуктов обогащения необходимо для улучшения условий их транспорта и хранения концентратов. При этом содержание влаги в концентратах зависит от их крупности, времени года, климатических условий района. В зимнее время предельное содержание влаги в концентратах должно быть минимальным, чтобы они не смерзались при транспортировке, так как это затрудняет разгрузку концентратов из железнодорожных вагонов, увеличивает простои транспорта, и в целом удорожает стоимость перевозок. В летнее время предельно допустимая влажность должна быть выше, чтобы снизить потери концентратов за счет пыления и просыпей при транспортировании их в открытых вагонах. Например, для карагандинских углей предельная влажность в зимнее время 7,5%, в летнее – 10,5%, для апатитового концентрата – в зимнее время 1%, в летнее – 1,5%.

В третьих, в зависимости от минерального состава полезного ископаемого и принятой схемы обогащения операции обезвоживания могут занимать различное место в технологической схеме. Если технологией предусмотрены пневматические, радиометрические или электрические методы обогащения, а поступающее сырье содержит избыток влаги, то его предварительно сушат. Например, асбестовую руду сушат перед пневматическим обогащением.

В четвертых, часто операции сгущения и дешламации находятся в середине технологической схемы обогащения, если из продуктов необходимо удалить часть воды перед последующей операцией, в которой процент твердого должен быть выше. На флотационных фабриках при обогащении полиметаллических руд сгущению подвергают коллективные концентраты флотации с содержанием твердого 35–40% перед их доизмельчением, где необходима плотность пульпы 60–70% твердого. На магнито-обогатительных фабриках операция дешламации служит и для удаления тонких породных шламов в слив, и для сгущения разбавленных пульп и обеспечения оптимального разжижения в последующей операции мокрой магнитной сепарации.

В пятых, отделяемая от продуктов обогащения вода используется в качестве оборотной. Применение оборотного водоснабжения на обогатительных фабриках позволяет значительно экономить свежую воду, снижая ее удельный расход с 12 до 0,7 м3/т, и предотвращает загрязнение водоемов, используемых для хозяйственно-питьевых целей, нужд рыбного хозяйства, то есть решает природоохранные задачи. Хвосты обогащения обезвоживают для удобства их складирования, уменьшения емкости хвостохранилищ и получения оборотной воды для технологических нужд. Обогатительные фабрики – крупные потребители воды, и возврат в производство оборотной воды имеет большое значение для сбережения водных ресурсов.

В зависимости от свойств твердого (плотность, крупность частиц, их поверхностные свойства), соотношения Ж : Т в пульпе, требований к конечной влажности продукта, обезвоживание продуктов обогащения осуществляется в одну или несколько последовательных операций. К процессам обезвоживания относятся дренирование, сгущение, центрифугирование, фильтрование, сушка.

В свою очередь эти процессы классифицируются на механическое обезвоживание – дренирование, сгущение, центрифугирование, фильтрование; и на термическое обезвоживание – сушка.

Процессам обезвоживания служит специальная аппаратура, а для размещения обезвоживающего оборудования строятся специальные производственные помещения – сгустительные отделения, фильтровальные, фильтровально-сушильные отделения.

Несмотря на то, что обезвоживание относится к вспомогательным процессам обогащения полезных ископаемых, роль его постоянно возрастает. Важность процессов разделения твердой и жидкой фаз объясняется следующими причинами:

– качество добываемых руд постоянно снижается, в результате чего переработке и обезвоживанию подвергаются всё большие объемы продуктов;

– руды более низкого качества требуют более тонкого измельчения, а следовательно, и более сложных и дорогих процессов обезвоживания тонкоизмельченных концентратов с высокой удельной поверхностью, и более совершенного оборудования;

– затраты на разделение твердой и жидкой фаз составляют существенную долю общих капитальных и эксплуатационных затрат на современных обогатительных фабриках;

– инструкции по охране окружающей среды требуют предотвращения сброса загрязненных технологических вод в естественные водоемы.

Источник

ОБЕЗВОЖИВАНИЕ (а. dewatering, dehydrating; н. Entwasserung; ф. deshydratation, essorage, egouttage, dessiccation; и. deshidratacion) — процесс отделения жидкой фазы (обычно воды) от полезного ископаемого или полученных из него продуктов переработки.

В горной промышленности обезвоживание применяется при подготовке и эксплуатации месторождений твёрдых полезных ископаемых, обогащении твёрдых полезных ископаемых, утилизации пылей и шламов фабрик, окусковании, добыче нефти и др. В зависимости от заданной степени удаления влаги для обезвоживания применяют дренирование, сгущение, фильтрование и сушку. В результате обезвоживания получают обезвоженный материал с влажностью; при дренировании 20-30% (иногда 5-10%), сгущении 40-60%, фильтровании 7-15% (иногда до 25%), сушке 0,5-7%.

На процесс обезвоживания оказывают влияние свойства поверхности минералов, их минералогический и гранулометрический состав, содержание твёрдого компонента в исходной пульпе, плотность твёрдой фазы, pH среды, температура пульпы и друге факторы. Важное значение для обезвоживания имеют требования к содержанию твёрдого компонента в обезвоженных продуктах и осветлённой воде. Обезвоживание минерального сырья в месторождениях (осушение месторождений) производится естественным или принудительным дренированием. При истощении запасов полезных ископаемых и ухудшении их технологических свойств роль обезвоживания непрерывно возрастает. При эксплуатации обводнённых месторождений полезных ископаемых используют сложные способы обезвоживания.

Наибольшее применение обезвоживание находит при обогащении полезных ископаемых, осуществляемом в основном в водной среде. Продукты обогатительных фабрик в значительной степени обводнены и непригодны для дальнейшего металлургического передела или транспортировки. Поэтому все концентраты подвергаются обезвоживанию. В отдельных случаях проводят обезвоживание отходов обогатительных фабрик в основном с целью выделения из них воды для оборотного водоснабжения либо для сухого складирования отходов. Влагу в продуктах обогащения в зависимости от энергии её связи с поверхностью минерала подразделяют на гигроскопическую, удерживаемую за счёт адсорбционных сил; плёночную, связанную с поверхностью силами молярного притяжения; капиллярную, которая заполняет поры между частицами минерала и удерживается капиллярными силами; гравитационную, заполняющую все промежутки между частицами. При обезвоживании удаляется обычно гравитационная и капиллярная влага. При термической сушке возможно удаление всей влаги.

Продукты крупнее 0,1 мм обезвоживаются дренированием за счёт фильтрации жидкости через зазоры между твёрдыми частицами под действием силы тяжести (иногда при дополнительном воздействии механических колебаний). Тонко измельчённые минеральные продукты обезвоживают сгущением, фильтрованием и термической сушкой. Термическая сушка применяется в том случае, если заданную влажность невозможно достигнуть сгущением и фильтрованием. Обезвоживание осуществляется в обезвоживающих установках. Для интенсификации процессов обезвоживания используется флокуляция и коагуляция тонких частиц. Если концентраты обладают магнитными свойствами, как, например, магнетитовый железорудный концентрат, то используется магнитная флокуляция, т.е. намагничивание пульпы перед подачей её в сгущающий аппарат. Для немагнитных материалов применяют реагенты — флокулянты (обычно полиакриламид) или коагулянты (соли поливалентных металлов, известь и др.). С уменьшением крупности измельчения руд и увеличением объёмов их переработки всё большее распространение получает фильтрация под давлением, позволяющая наиболее полно удалять влагу из пульпы без применения термических методов.

Обезвоживание нефти проводится для выделения пластовой воды из продукции нефтяных скважин на нефтяных промыслах. Обезвоживание основано на разрушении водонефтяной эмульсий (см. Деэмульсация). Содержание воды в нефти после её обезвоживания (перед подачей в систему магистральных нефтепроводов) не должно превышать 1%. Обезвоживание нефти имеет важное значение для охраны окружающей среды, т.к. выделяемая при этом пластовая вода закачивается обратно в продуктивные горизонты (для поддержания пластового давления), а следовательно, сокращается использование для этих целей пресной воды.

Источник

Обогаще́ние поле́зных ископа́емых — совокупность процессов первичной обработки минерального сырья, имеющая своей целью отделение всех ценных минералов от пустой породы, а также взаимное разделение ценных минералов.

Общая информация[править | править код]

При обогащении возможно получение как конечных товарных продуктов (асбест, графит и др.), так и концентратов, пригодных для дальнейшей химической или металлургической переработки. Обогащение — наиважнейшее промежуточное звено между добычей полезных ископаемых и использованием извлекаемых веществ. В основе теории обогащения лежит анализ свойств минералов и их взаимодействия в процессах разделения — минералургия.

Обогащение позволяет существенно увеличить концентрацию ценных компонентов. Содержание важных цветных металлов — меди, свинца, цинка — в рудах составляет 0,3—2 %, а в их концентратах — 20—70 %. Концентрация молибдена увеличивается от 0,1—0,05 % до 47—50 %, вольфрама — от 0,1—0,2 % до 45—65 %, зольность угля снижается от 25—35 % до 2—15 %. В задачу обогащения входит также удаление вредных примесей минералов (мышьяк, сера, кремний и т. д.). Извлечение ценных компонентов в концентрат в процессах обогащения составляет от 60 до 95 %.

Операции обработки, которым подвергают на обогатительной фабрике горную массу, подразделяют на: основные (собственно обогатительные); подготовительные и вспомогательные.

Все существующие методы обогащения основаны на различиях в физических или физико-химических свойствах отдельных компонентов полезного ископаемого. Существует, например, гравитационное, магнитное, электрическое, флотационное, бактериальное и др. способы обогащения.

Технологический эффект обогащения[править | править код]

Предварительное обогащение полезных ископаемых позволяет:

  • увеличить промышленные запасы минерального сырья за счёт использования месторождений бедных полезных ископаемых с низким содержанием полезных компонентов;
  • повысить продуктивность труда на горных предприятиях и снизить стоимость добываемой руды за счёт механизации горных работ и сплошной выемки полезного ископаемого вместо выборочной;
  • повысить технико-экономические показатели металлургических и химических предприятий при переработке обогащённого сырья за счёт снижения затрат топлива, электроэнергии, флюсов, химических реактивов, улучшения качества готовых продуктов и снижения потерь полезных компонентов с отходами;
  • осуществить комплексное использование полезных ископаемых, потому что предварительное обогащение позволяет извлечь из них не только основные полезные компоненты, но и сопутствующие, которые содержатся в малых количествах;
  • снизить затраты на транспортировку к потребителям продукции горного производства за счёт транспортирования более богатых продуктов, а не всего объёма добытой горной массы, содержащей полезное ископаемое;
  • выделить из минерального сырья вредные примеси, которые при дальнейшей их переработке могут ухудшать качество конечной продукции, загрязнять окружающую среду и угрожать здоровью людей.

Переработка полезных ископаемых осуществляется на обогатительных фабриках, представляющих собой сегодня мощные высокомеханизированные предприятия со сложными технологическими процессами.

Классификация процессов обогащения[править | править код]

Переработка полезных ископаемых на обогатительных фабриках включает ряд последовательных операций, в результате которых достигается отделение полезных компонентов от примесей. По своему назначению процессы переработки полезных ископаемых разделяют на подготовительные, основные (обогатительные) и вспомогательные (заключительные).

Подготовительные процессы[править | править код]

Подготовительные процессы предназначены для раскрытия или открытия зёрен полезных компонентов (минералов), входящих в состав полезного ископаемого, и деления его на классы крупности, удовлетворяющие технологическим требованиям последующих процессов обогащения. К подготовительным относят процессы дробления, измельчения, грохочения и классификации.

Дробление и измельчение[править | править код]

Дробление и измельчение — процесс разрушения и уменьшения размеров кусков минерального сырья (полезного ископаемого) под действием внешних механических, тепловых, электрических сил, направленных на преодоления внутренних сил сцепления, связывающих между собой частички твёрдого тела.

По физике процесса между дроблением и измельчением нет принципиальной разницы. Условно принято считать, что при дроблении получают частицы крупнее 5 мм, а при измельчении — мельче 5 мм. Размер наиболее крупных зёрен, до которого необходимо раздробить или измельчить полезное ископаемое при его подготовке к обогащению, зависит от размера включений основных компонентов, входящих в состав полезного ископаемого, и от технических возможностей оборудования, на котором предполагается проводить следующую операцию переработки раздробленного (измельчённого) продукта.

Раскрытие зёрен полезных компонентов — дробления или (и) измельчения сростков до полного освобождения зёрен полезного компонента и получения механической смеси зёрен полезного компонента и пустой породы (микста). Открытие зёрен полезных компонентов — дробление или (и) измельчения сростков до высвобождения части поверхности полезного компонента, что обеспечивает доступ к нему реагента.

Дробление проводят на специальных дробильных установках. Дроблением называется процесс разрушения твердых тел с уменьшением размеров кусков до заданной крупности, путём действия внешних сил, преодолевающих внутренное силы сцепления, связывающие между собой частицы твердого вещества. Измельчение дроблёного материала осуществляют в специальных мельницах (как правило, шаровых или стержневых).

Грохочение и классификация[править | править код]

Грохочение и классификация применяются с целью разделения полезного ископаемого на продукты разной крупности — классы крупности. Грохочение осуществляется рассеванием полезного ископаемого на решето и ситах с калиброванными отверстиями на мелкий (подрешётный) продукт и крупный (надрешётный). Грохочение применяется для разделения полезных ископаемых по крупности на просевных (просеивающих) поверхностях, с размерами отверстий от миллиметра до нескольких сотен миллиметров.

Грохочение осуществляется специальными машинами — грохотами.

Классификация материала по крупности производится в водной или воздушной среде и базируется на использовании различий в скоростях оседания частичек разной крупности. Большие частички оседают быстрее и концентрируются в нижней части классификатора, мелкие частички оседают медленнее и выносятся из аппарата водным или воздушным потоком. Полученные при классификации крупные продукты называются песками, а мелкие — сливом (при гидравлической классификации) или тонким продуктом (при пневмоклассификации). Классификация используется для разделения мелких и тонких продуктов по зерну размером не более 1 мм.

Основные (обогатительные) процессы[править | править код]

Основные процессы обогащения предназначены для выделения из исходного минерального сырья одного или нескольких полезных компонентов. Исходный материал в процессе обогащения разделяется на соответствующие продукты – концентрат(ы), пром.продукты и отвальные хвосты. В процессах обогащения используют отличия минералов полезного компонента и пустой породы в плотности, магнитной восприимчивости, смачиваемости, электропроводности, крупности, форме зёрен, химических свойствах и др.

Различия в плотности минеральных зёрен используются при обогащении полезных ископаемых гравитационным методом. Его широко применяют при обогащении угля, руд и нерудного сырья.

Магнитное обогащение полезных ископаемых основывается на неодинаковом воздействии магнитного поля на минеральные частички с разной магнитной восприимчивостью и на действии коэрицитивной силы. Магнитным способом, используя магнитные сепараторы, обогащают железные, марганцевые, титановые, вольфрамовые и другие руды. Кроме того, этим способом выделяют железистые примеси из графитовых, тальковых и других полезных ископаемых, применяют для регенерации магнетитовых суспензий.

Различия в смачиваемости компонентов водой используется при обогащении полезных ископаемых флотационным способом. Особенностью флотационного способа является возможность штучного регулирования смоченности и разделения очень тонких минеральных зёрен. Благодаря этим особенностям флотационный способ является одним из наиболее универсальных, он используется для обогащения разнообразных тонковкрапленных полезных ископаемых.

Различия в смачиваемости компонентов используется также в ряде специальных процессов обогащения гидрофобных полезных ископаемых — в масляной агломерации, масляной грануляции, полимерной (латексной) и масляной флокуляции.

Полезные ископаемые, компоненты которых имеют различия в электропроводности или имеют способность под действием тех или иных факторов приобретать разные по величине и знаку электрические заряды, могут обогащаться способом электрической сепарации. К таким полезным ископаемым относятся апатитовые, вольфрамовые, оловянные и другие руды.

Обогащение по крупности используется в тех случаях, когда полезные компоненты представлены более крупными или, наоборот, более мелкими зёрнами в сравнении с зёрнами пустой породы. В россыпях полезные компоненты находятся в виде мелких частичек, поэтому выделение крупных классов позволяет избавиться от значительной части породных примесей.

Различия в форме зёрен и коэффициенте трения позволяют отделять плоские чешуйчатые частички слюды или волокнистые агрегаты асбеста от частичек породы, которые имеют округлую форму. При движении по наклонной плоскости волокнистые и плоские частички скользят, а округлые зёрна скатываются вниз. Коэффициент трения качения всегда меньше коэффициента трения скольжения, поэтому плоские и округлые частички движутся по наклонной плоскости с разными скоростями и по разным траекториям, что создаёт условия для их разделения.

Различия в оптических свойствах компонентов используется при обогащении полезных ископаемых способом фотометрической сепарации. Этим способом осуществляется механическое рудоразделение зёрен, имеющих разный цвет и блеск (например, отделение зёрен алмазов от зёрен пустой породы).

Отличия в адгезионных и сорбционных свойствах минералов полезного компонента и пустой породы лежит в основе адгезионного и сорбционного способов обогащения золота и адгезионного обогащения алмазов (способы принадлежат к специальным способам обогащения).

Разные свойства компонентов полезного ископаемого взаимодействовать с химическими реагентами, бактериями и (или) их метаболитами обуславливает принцип действия химического и бактериального выщелачивания ряда полезных ископаемых (золото, медь, никель).

Разная растворимость минералов лежит в основе современных комплексных (совмещённых) процессов типа «добыча-обогащение» (скважинное растворение солей с дальнейшим выпариванием раствора).

Использование того или иного метода обогащения зависит от минерального состава полезных ископаемых, физических и химических свойств разделяемых компонентов.

Заключительные операции[править | править код]

Заключительные операции в схемах переработки полезных ископаемых предназначены, как правило, для снижения влажности до кондиционного уровня, а также для регенерации оборотных вод обогатительной фабрики.

Основные заключительные операции — сгущение пульпы, обезвоживание и сушка продуктов обогащения. Выбор метода обезвоживания зависит от характеристик материала, который обезвоживается, (начальной влажности, гранулометрического и минералогического составов) и требований к конечной влажности. Часто необходимой конечной влажности трудно достичь за одну стадию, поэтому на практике для некоторых продуктов обогащения используют операции обезвоживания разными способами в несколько стадий.

Для обезвоживания продуктов обогащения используют способы дренирования (грохоты, элеваторы), центрифугирования (фильтрующие, осадительные и комбинированные центрифуги), сгущения (сгустители, гидроциклоны), фильтрования (вакуум-фильтры, фильтр-прессы) и термической сушки.

Кроме технологических процессов, для нормального функционирования обогатительной фабрики должны быть предусмотрены процессы производственного обслуживания: внутрицеховой транспорт полезного ископаемого и продуктов его переработки, снабжения фабрики водой, электроэнергией, теплом, технологический контроль качества сырья и продуктов переработки.

Основные методы обогащения полезных ископаемых[править | править код]

По виду среды, в которой производят обогащение, различают обогащение:

  • сухое обогащение (в воздухе и аэросуспензии),
  • мокрое (в воде, тяжёлых средах),
  • в гравитационном поле,
  • в поле центробежных сил,
  • в магнитном поле,
  • в электрическом поле.

Гравитационные методы обогащения основываются на различии в плотности, крупности и скорости движения кусков породы в водной или воздушной среде. При разделении в тяжёлых средах преимущественное значение имеет разница в плотности разделяемых компонентов.

Для обогащения наиболее мелких частиц применяют способ флотации, основанный на разнице в поверхностных свойствах компонентов (избирательной смачиваемости водой, прилипании частиц минерального сырья к пузырькам воздуха).

Продукты обогащения полезных ископаемых[править | править код]

В результате обогащения полезное ископаемое разделяется на несколько продуктов: концентрат (один или несколько) и отходы. Кроме того, в процессе обогащения могут быть получены промежуточные продукты.

Концентраты[править | править код]

Концентраты — продукты обогащения, в которых сосредоточено основное количество ценного компонента. Концентраты в сравнении с обогащаемым материалом характеризуются значительно более высоким содержанием полезных компонентов и более низким содержанием пустой породы и вредных примесей. В дальнейшем концентраты направляются на дальнейшую переработку. Концентраты обогащения руд чёрных и цветных металлов могут подвергаться окускованию или сразу направляться напрямую на пирометаллургический передел[1].

Отходы[править | править код]

Отходы — конечные продукты обогащения с малым содержанием ценных компонентов, дальнейшее извлечение которых невозможно технически и/или нецелесообразно экономически. (Данный термин равнозначен употреблявшемуся ранее термину отвальные хвосты, но не термину хвосты, которым, в отличие от отходов, называют обеднённый продукт любой отдельно взятой обогатительной операции).

Промежуточные продукты[править | править код]

Промежуточные продукты (промпродукты) — это механическая смесь сростков с раскрытыми зёрнами полезных компонентов и пустой породы. Промпродукты характеризуются более низким в сравнении с концентратами и более высоким в сравнении с отходами содержанием полезных компонентов.

Качество обогащения[править | править код]

Качество полезных ископаемых и продуктов обогащения определяется содержанием и извлечением ценного компонента, примесей, сопутствующих элементов, а также влажностью и крупностью.

Обогащение полезных ископаемых идеальное[править | править код]

Под идеальным обогащением полезных ископаемых (идеальным разделением) понимается процесс разделения минеральной смеси на компоненты, при котором полностью отсутствует засорение каждого продукта посторонними для него частичками. Эффективность идеального обогащения полезных ископаемых составляет 100 % по любым критериям.

Частичное обогащение полезных ископаемых[править | править код]

Частичное обогащение — это обогащение отдельного класса крупности полезного ископаемого, или выделение наиболее легко отделяемой части засоряющих примесей из конечного продукта с целью повышения концентрации в нём полезного компонента. Применяется, например, для снижения зольности неклассифицированного энергетического угля путём выделения и обогащения крупного класса с дальнейшим смешиванием полученного концентрата и мелкого необогащённого отсева.

Потери полезных ископаемых при обогащении[править | править код]

Под потерями полезного ископаемого при обогащении понимается количество пригодного для обогащения полезного компонента, которое теряется с отходами обогащения вследствие несовершенства процесса или нарушения технологического режима.

Установлены допустимые нормы взаимозасорения продуктов обогащения для разных технологических процессов, в частности, для обогащения угля. Допустимый процент потерь полезного ископаемого сбрасывается с баланса продуктов обогащения для покрытия расхождений при учёте массы влаги, выноса полезных ископаемых с дымовыми газами сушилен, механических потерь.

Граница обогащения полезных ископаемых[править | править код]

Граница обогащения полезных ископаемых — это наименьший и наибольший размеры частичек руды, угля, эффективно обогащаемых в обогатительной машине.

Глубина обогащения[править | править код]

Глубина обогащения — это нижняя граница крупности материала, который подлежит обогащению.

При обогащении угля применяются технологические схемы с границами обогащения 13; 6; 1; 0,5 и 0 мм. Соответственно выделяется необогащённый отсев крупностью 0—13 или 0—6 мм, или шлам крупностью 0—1 или 0—0,5 мм. Граница обогащения 0 мм означает, что все классы крупности подлежат обогащению.

Международные конгрессы[править | править код]

Почтовая марка СССР 1968 года, посвященная VIII Международному конгрессу по обогащению полезных ископаемых, проводившемуся в тот год в Ленинграде

С 1952 года проводятся Международные конгрессы по обогащению полезных и