Понятие о полезном времени действия раздражителя

Понятие о полезном времени действия раздражителя thumbnail

ФИЗИОЛОГИЯ И Б И О Ф И 3 И К А В О 3 Б У Д И М Ы X

КЛЕТОК

Понятие о раздражимости, возбудимости и возбуждении. Классификация раздражителей

Раздражимость – это способность клеток, тканей, организма в целом переходить под воздействием факторов внешней или внутренней среды из состояния физиологического покоя в состояние активности. Состояние активности проявляется изменением физиологических параметров клетки, ткани, организма, например изменением метаболизма.

Возбудимость – это способность живой ткани отвечать на раздражение активной специфической реакцией – возбуждением, т.е. генерацией нервного импульса, сокращением, секрецией. Т.е. возбудимость характеризует специализированные ткани – нервную, мышечные, железистые, которые называются возбудимыми. Возбуждение – это комплекс процессов реагирования возбудимой ткани на действие раздражителя, проявляющийся изменением мембранного потенциала, метаболизма и т.д. Возбудимые ткани обладают проводимостью. Это способность ткани проводить возбуждение. Наибольшей проводимостью обладают нервы и скелетные мышцы.

Раздражитель – это фактор внешней или внутренней среды действующий на живую ткань.

Процесс воздействия раздражителя на клетку, ткань, организм называется раздражением.

Все раздражители делятся на следующие группы: 1.По природе

А) физические (электричество, свет, звук, механические воздействия и т.д.)

Б) химические (кислоты, щелочи, гормоны и т.д.)

В) физико-химические (осмотическое давление, парциальное давление газов и т.д.)

Г) биологические (пища для животного, особь другого пола)

д) социальные (слово для человека). 2.По месту воздействия:

А) внешние (экзогенные)

б) внутренние (эндогенные) З.По силе:

А) подпороговые (не вызывающие ответной реакции)

Б) пороговые (раздражители минимальной силы, при которой возникает возбуждение)

в) сверхпороговые (силой выше пороговой) 4.По физиологическому характеру:

а) адекватные (физиологичные для данной клетки или рецептора, которые приспособились к нему в |процессе эволюции, например, свет для фоторецепторов глаза).

Б) неадекватные

Если реакция на раздражитель является рефлекторной, то выделяют также:

А) безусловно-рефлекторные раздражители

Б) условно-рефлекторные

Законы раздражения. Параметры возбудимости.

Реакция клеток, тканей на раздражитель определяется законами раздражения

I .Закон «все или ничего»: При допороговых раздражениях клетки, ткани ответной реакции не возникает. При пороговой силе раздражителя развивается максимальная ответная реакция, поэтому увеличение силы раздражения выше пороговой не сопровождается ее усилением. В соответствии с этим законом реагирует на раздражения одиночное нервное и мышечное волокно, сердечная мышца.

Акон силы: Чем больше сила раздражителя, тем сильнее ответная реакция Однако выраженностъ ответной реакции растет лишь до определенного максимума. Закону силы подчиняется целостная скелетная, гладкая мышца, так как они состоят из многочисленных мышечных клеток, умеющих различную возбудимость.

Закон силы-длительности. Между силой и длительностью действия раздражителя имеется определенная взаимосвязь. Чем сильнее раздражитель, тем меньшее время требуется для возникновения ответной реакции. Зависимость между пороговой силой и необходимой длительностью раздражения отражается кривой силы-длительности. По этой кривой можно определить ряд параметров возбудимости, а) Порог раздражения – это минимальная сила раздражителя, при которой возникает возбуждение.

Б) Реобаза – это минимальная сила раздражителя, вызывающая возбуждение при его действии в течение неограниченно долгого времени. На практике порог и реобаза имеют одинаковый смысл. Чем ниже порог раздражения или меньше реобаза, тем выше возбудимость ткани.

в) Полезное время – это минимальное время действия раздражителя силой в одну реобазу за которое возникает возбуждение.

Г) Хронаксия – это минимальное время действия раздражителя силой в две реобазы, необходимое для возникновения возбуждения. Этот параметр предложил рассчитывать Л. Лапик, для более точного определения показателя времени на кривой силы-длительности. Чем короче полезное время или хронаксия, тем выше возбудимость и наоборот.

Источник

Лекция №2 Для медико-профилактического факультета

Кафедра нормальной физиологии им. Н.Ю.Беленкова доцент Продиус Петр Анатольевич

2013 г.

План лекции

•1. Условия возникновения возбуждения.

•2. Понятие о пороговых характеристиках раздражителя.

•3. Кривая “сила-длительность”. Понятие о реобазе, полезном времени, хронаксии.

•4. Законы раздражения, действующие в пределах клетки и ткани.

•5. Изменение возбудимости в процессе возбуждения.

•6. Понятие о лабильности. Оптимальные и пессимальные реакции возбудимых тканей.

УСЛОВИЯ ВОЗНИКНОВЕНИЯ ВОЗБУЖДЕНИЯ

А. Структурно-функциональное состояние мембраны:

достаточный уровень МПП,

определенный уровень Екр.,

уровень порогового потенциала (ΔЕ),

уровень К+, Na+-проницаемости

Б. Значение параметров раздражителя :

достаточная сила,

достаточное время,

достаточный градиент нарастания силы во времени,

для возникновения возбуждения.

С. Воздействие раздражителя на возбудимую ткань.

ПОНЯТИЕ О ПОРОГОВЫХ ХАРАКТЕРИСТИКАХ РАЗДРАЖИТЕЛЯ

Порог раздражителя – минимальная сила раздражителя, способная вызвать возбуждение.

Параметры раздражителя могут быть подпороговыми, пороговыми и сверхпороговыми.

Абсолютный порог силы – минимальная величина силы раздражителя, вызывающая возбуждение.

Абсолютный порог времени – минимальная величина силы раздражителя, вызывающая возбуждение.

Между пороговыми показателями силы и времени раздражителя существует обратная связь. Графически эта связь представлена гиперболой называемой «сила- длительность» (или кривой Гоорвейга-Вейса-Лапика).

Понятие о полезном времени действия раздражителя

ЗАВИСИМОСТЬ ПОРОГОВОЙ СИЛЫ РАЗДРАЖИТЕЛЯ ОТ ВРЕМЕНИ ЕГО ДЕЙСТВИЯ

Р – Реобаза

ПВ – Полезное время

Х – Хронаксия

ПОНЯТИЕ О РЕОБАЗЕ, ПОЛЕЗНОМ ВРЕМЕНИ И ХРОНАКСИИ

•Реобаза (Абсолютный порог силы) – минимальная величина силы раздражителя, вызывающая возбуждение.

•Полезное время – это минимальное время, в течение которого должен действовать раздражитель пороговой силы(реобаза) с тем, чтобы вызвать возбуждение.

•Хронаксия – минимальное время, в течение которого должен действовать раздражитель удвоенной реобазы, чтобы вызвать возбуждение.

ЗАКОНЫ РАЗДРАЖЕНИЯ ДЛЯ ВОЗБУДИМОЙ КЛЕТКИ

Для возникновения возбуждения должны быть достаточными

•сила,

•время действия раздражителя,

•крутизна нарастания силы раздражителя во времени.

Для клетки закон силы и времени действует

по принципу «все или ничего».

Закон градиента нарастания силы во времени проявляется в линейной зависимости с максимально возможным значением сверхпороговых величин при прямоугольном импульсе.

Понятие о полезном времени действия раздражителя

ЗАКОНЫ РАЗДРАЖЕНИЯ ДЛЯ ВОЗБУДИМОЙ КЛЕТКИ

Подписи к предыдущему рисунку.

А. Изменение мембранного потенциала при раздражении нерва.

1А – Сила раздражения < 50% пороговой величины (Пассивная деполяризация мембраны) – электротон. 2А – Сила раздражения 50%- 99,9% пороговой

величины (Пассивная деполяризация мембраны +

повышения натриевой проводимости) – локальный ответ.

3А – Сила раздражения – 100% пороговой величины – потенциал действия 4А – Сила раздражения – >100% пороговой величины –

потенциал действия.

Б. Изменение длины мышечного волокна при раздражении.

ЗАКОНЫ РАЗДРАЖЕНИЯ ДЛЯ ВОЗБУДИМОЙ ТКАНИ

•• Для ткани законы силы и времени

•действуют по принципу «силовых

•отношений».

•• Различают:

•• 1). Подпороговые раздражители

•• 2). Пороговые раздражители

•• 3). Сверхпороговые раздражители –

•субмаксимальные, максимальный,

•супермаксимальные раздражители

Понятие о полезном времени действия раздражителя

Понятие о полезном времени действия раздражителя

Источник

  • 1. Физиологическая характеристика возбудимых тканей
  • 2. Законы раздражения возбудимых тканей
  • 3. Понятие о состоянии покоя и активности возбудимых тканей
  • 4. Физико-химические механизмы возникновения потенциала покоя
  • 5. Физико-химические механизмы возникновения потенциала действия
  • ЛЕКЦИЯ № 2. Физиологические свойства и особенности функционирования возбудимых тканей

    1. Физиологическая характеристика возбудимых тканей

    Основным свойством любой ткани является раздражимость, т. е. способность ткани изменять свои физиологические свойства и проявлять функциональные отправления в ответ на действие раздражителей.

    Раздражители – это факторы внешней или внутренней среды, действующие на возбудимые структуры.

    Различают две группы раздражителей:

    1) естественные (нервные импульсы, возникающие в нервных клетках и различных рецепторах);

    2) искусственные: физические (механические – удар, укол; температурные – тепло, холод; электрический ток – переменный или постоянный), химические (кислоты, основания, эфиры и т. п.), физико-химические (осмотические – кристаллик хлорида натрия).

    Классификация раздражителей по биологическому принципу:

    1) адекватные, которые при минимальных энергетических затратах вызывают возбуждение ткани в естественных условиях существования организма;

    2) неадекватные, которые вызывают в тканях возбуждение при достаточной силе и продолжительном воздействии.

    К общим физиологическим свойствам тканей относятся:

    1) возбудимость – способность живой ткани отвечать на действие достаточно сильного, быстрого и длительно действующего раздражителя изменением физиологических свойств и возникновением процесса возбуждения.

    Мерой возбудимости является порог раздражения. Порог раздражения – это та минимальная сила раздражителя, которая впервые вызывает видимые ответные реакции. Так как порог раздражения характеризует и возбудимость, он может быть назван и порогом возбудимости. Раздражение меньшей интенсивности, не вызывающее ответные реакции, называют подпороговым;

    2) проводимость – способность ткани передавать возникшее возбуждение за счет электрического сигнала от места раздражения по длине возбудимой ткани;

    3) рефрактерность – временное снижение возбудимости одновременно с возникшим в ткани возбуждением. Рефрактерность бывает абсолютной (нет ответа ни на какой раздражитель) и относительной (возбудимость восстанавливается, и ткань отвечает на подпороговый или сверхпороговый раздражитель);

    4) лабильность – способность возбудимой ткани реагировать на раздражение с определенной скоростью. Лабильность характеризуется максимальным числом волн возбуждения, возникающих в ткани в единицу времени (1 с) в точном соответствии с ритмом наносимых раздражений без явления трансформации.

    2. Законы раздражения возбудимых тканей

    Законы устанавливают зависимость ответной реакции ткани от параметров раздражителя. Эта зависимость характерна для высоко организованных тканей. Существуют три закона раздражения возбудимых тканей:

    1) закон силы раздражения;

    2) закон длительности раздражения;

    3) закон градиента раздражения.

    Закон силы раздражения устанавливает зависимость ответной реакции от силы раздражителя. Эта зависимость неодинакова для отдельных клеток и для целой ткани. Для одиночных клеток зависимость называется «все или ничего». Характер ответной реакции зависит от достаточной пороговой величины раздражителя. При воздействии подпороговой величиной раздражения ответной реакции возникать не будет (ничего). При достижении раздражения пороговой величины возникает ответная реакция, она будет одинакова при действии пороговой и любой сверхпороговой величины раздражителя (часть закона – все).

    Для совокупности клеток (для ткани) эта зависимость иная, ответная реакция ткани прямо пропорциональна до определенного предела силе наносимого раздражения. Увеличение ответной реакции связано с тем, что увеличивается количество структур, вовлекающихся в ответную реакцию.

    Закон длительности раздражений. Ответная реакция ткани зависит от длительности раздражения, но осуществляется в определенных пределах и носит прямо пропорциональный характер. Существует зависимость между силой раздражения и временем его действия. Эта зависимость выражается в виде кривой силы и времени. Эта кривая называется кривой Гоорвега—Вейса—Лапика. Кривая показывает, что каким бы сильным ни был бы раздражитель, он должен действовать определенный период времени. Если временной отрезок маленький, то ответная реакция не возникает. Если раздражитель слабый, то бы как длительно он ни действовал, ответная реакция не возникает. Сила раздражителя постепенно увеличивается, и в определенный момент возникает ответная реакция ткани. Эта сила достигает пороговой величины и называется реобазой (минимальной силой раздражения, которая вызывает первичную ответную реакцию). Время, в течение которого действует ток, равный реобазе, называется полезным временем.

    Закон градиента раздражения. Градиент – это крутизна нарастания раздражения. Ответная реакция ткани зависит до определенного предела от градиента раздражения. При сильном раздражителе примерно на третий раз нанесения раздражения ответная реакция возникает быстрее, так как она имеет более сильный градиент. Если постепенно увеличивать порог раздражения, то в ткани возникает явление аккомодации. Аккомодация – это приспособление ткани к медленно нарастающему по силе раздражителю. Это явление связано с быстрым развитием инактивации Na-каналов. Постепенно происходит увеличение порога раздражения, и раздражитель всегда остается подпороговым, т. е. порог раздражения увеличивается.

    Законы раздражения возбудимых тканей объясняют зависимость ответной реакции от параметров раздражителя и обеспечивают адаптацию организмов к факторам внешней и внутренней среды.

    3. Понятие о состоянии покоя и активности возбудимых тканей

    О состоянии покоя в возбудимых тканях говорят в том случае, когда на ткань не действует раздражитель из внешней или внутренней среды. При этом наблюдается относительно постоянный уровень метаболизма, нет видимого функционального отправления ткани. Состояние активности наблюдается в том случае, когда на ткань действует раздражитель, при этом изменяется уровень метаболизма, и наблюдается функциональное отправление ткани.

    Основные формы активного состояния возбудимой ткани – возбуждение и торможение.

    Возбуждение – это активный физиологический процесс, который возникает в ткани под действием раздражителя, при этом изменяются физиологические свойства ткани, и наблюдается функциональное отправление ткани. Возбуждение характеризуется рядом признаков:

    1) специфическими признаками, характерными для определенного вида тканей;

    2) неспецифическими признаками, характерными для всех видов тканей (изменяются проницаемость клеточных мембран, соотношение ионных потоков, заряд клеточной мембраны, возникает потенциал действия, изменяющий уровень метаболизма, повышается потребление кислорода и увеличивается выделение углекислого газа).

    По характеру электрического ответа существует две формы возбуждения:

    1) местное, нераспространяющееся возбуждение (локальный ответ). Оно характеризуется тем, что:

    а) отсутствует скрытый период возбуждения;

    б) возникает при действии любого раздражителя, т. е. нет порога раздражения, имеет градуальный характер;

    в) отсутствует рефрактерность, т. е. в процессе возникновения возбуждения возбудимость ткани возрастает;

    г) затухает в пространстве и распространяется на короткие расстояния, т. е. характерен декремент;

    2) импульсное, распространяющееся возбуждение. Оно характеризуется:

    а) наличием скрытого периода возбуждения;

    б) наличием порога раздражения;

    в) отсутствием градуального характера (возникает скачкообразно);

    г) распространением без декремента;

    д) рефрактерностью (возбудимость ткани уменьшается).

    Торможение – активный процесс, возникает при действии раздражителей на ткань, проявляется в подавлении другого возбуждения. Следовательно, функционального отправления ткани нет.

    Торможение может развиваться только в форме локального ответ.

    Выделяют два типа торможения:

    1) первичное, для возникновения которого необходимо наличие специальных тормозных нейронов. Торможение возникает первично без предшествующего возбуждения;

    2) вторичное, которое не требует специальных тормозных структур. Оно возникает в результате изменения функциональной активности обычных возбудимых структур.

    Процессы возбуждения и торможения тесно связаны между собой, протекают одновременно и являются различными проявлениями единого процесса. Очаги возбуждения и торможения подвижны, охватывают большие или меньшие области нейронных популяций и могут быть более или менее выражены. Возбуждение непременно сменяется торможением, и наоборот, т. е. между торможением и возбуждением существуют индукционные отношения.

    4. Физико-химические механизмы возникновения потенциала покоя

    Мембранный потенциал (или потенциал покоя) – это разность потенциалов между наружной и внутренней поверхностью мембраны в состоянии относительного физиологического покоя. Потенциал покоя возникает в результате двух причин:

    1) неодинакового распределения ионов по обе стороны мембраны. Внутри клетки находится больше всего ионов К, снаружи его мало. Ионов Na и ионов Cl больше снаружи, чем внутри. Такое распределение ионов называется ионной асимметрией;

    2) избирательной проницаемости мембраны для ионов. В состоянии покоя мембрана неодинаково проницаема для различных ионов. Клеточная мембрана проницаема для ионов K, малопроницаема для ионов Na и непроницаема для органических веществ.

    За счет этих двух факторов создаются условия для движения ионов. Это движение осуществляется без затрат энергии путем пассивного транспорта – диффузией в результате разности концентрации ионов. Ионы K выходят из клетки и увеличивают положительный заряд на наружной поверхности мембраны, ионы Cl пассивно переходят внутрь клетки, что приводит к увеличению положительного заряда на наружной поверхности клетки. Ионы Na накапливаются на наружной поверхности мембраны и увеличивают ее положительный заряд. Органические соединения остаются внутри клетки. В результате такого движения наружная поверхность мембраны заряжается положительно, а внутренняя – отрицательно. Внутренняя поверхность мембраны может не быть абсолютно отрицательно заряженной, но она всегда заряжена отрицательно по отношению к внешней. Такое состояние клеточной мембраны называется состоянием поляризации. Движение ионов продолжается до тех пор, пока не уравновесится разность потенциалов на мембране, т. е. не наступит электрохимическое равновесие. Момент равновесия зависит от двух сил:

    1) силы диффузии;

    2) силы электростатического взаимодействия.

    Значение электрохимического равновесия:

    1) поддержание ионной асимметрии;

    2) поддержание величины мембранного потенциала на постоянном уровне.

    В возникновении мембранного потенциала участвуют сила диффузии (разность концентрации ионов) и сила электростатического взаимодействия, поэтому мембранный потенциал называется концентрационно-электрохимическим.

    Для поддержания ионной асимметрии электрохимического равновесия недостаточно. В клетке имеется другой механизм – натрий-калиевый насос. Натрий-калиевый насос – механизм обеспечения активного транспорта ионов. В клеточной мембране имеется система переносчиков, каждый из которых связывает три иона Na, которые находятся внутри клетки, и выводит их наружу. С наружной стороны переносчик связывается с двумя ионами K, находящимися вне клетки, и переносит их в цитоплазму. Энергия берется при расщеплении АТФ. Работа натрий-калиевого насоса обеспечивает:

    1) высокую концентрацию ионов К внутри клетки, т. е. постоянную величину потенциала покоя;

    2) низкую концентрацию ионов Na внутри клетки, т. е. сохраняет нормальную осмолярность и объем клетки, создает базу для генерации потенциала действия;

    3) стабильный концетрационный градиент ионов Na, способствуя транспорту аминокислот и сахаров.

    5. Физико-химические механизмы возникновения потенциала действия

    Потенциал действия – это сдвиг мембранного потенциала, возникающий в ткани при действии порогового и сверхпорогового раздражителя, что сопровождается перезарядкой клеточной мембраны.

    При действии порогового или сверхпорогового раздражителя изменяется проницаемость клеточной мембраны для ионов в различной степени. Для ионов Na она повышается в 400–500 раз, и градиент нарастает быстро, для ионов К – в 10–15 раз, и градиент развивается медленно. В результате движение ионов Na происходит внутрь клетки, ионы К двигаются из клетки, что приводит к перезарядке клеточной мембраны. Наружная поверхность мембраны несет отрицательный заряд, внутренняя – положительный.

    Компоненты потенциала действия:

    1) локальный ответ;

    2) высоковольтный пиковый потенциал (спайк);

    3) следовые колебания:

    а) отрицательный следовой потенциал;

    б) положительный следовой потенциал.

    Локальный ответ.

    Пока раздражитель не достиг на начальном этапе 50–75 % от величины порога, проницаемость клеточной мембраны остается неизменой, и электрический сдвиг мембранного потенциала объясняется раздражающим агентом. Достигнув уровня 50–75 %, открываются активационные ворота (m-ворота) Na-каналов, и возникает локальный ответ.

    Ионы Na путем простой диффузии поступают в клетку без затрат энергии. Достигнув пороговой силы, мембранный потенциал снижается до критического уровня деполяризации (примерно 50 мВ). Критический уровень деполяризации – это то количество милливольт, на которое должен снизиться мембранный потенциал, чтобы возник лавинообразный ход ионов Na в клетку. Если сила раздражения недостаточна, то локального ответа не происходит.

    Высоковольтный пиковый потенциал (спайк).

    Пик потенциала действия является постоянным компонентом потенциала действия. Он состоит из двух фаз:

    1) восходящей части – фазы деполяризации;

    2) нисходящей части – фазы реполяризации.

    Лавинообразное поступление ионов Na в клетку приводит к изменению потенциала на клеточной мембране. Чем больше ионов Na войдет в клетку, тем в большей степени деполяризуется мембрана, тем больше откроется активационных ворот. Постепенно заряд с мембраны снимается, а потом возникает с противоположным знаком. Возникновение заряда с противоположным знаком называется инверсией потенциала мембраны. Движение ионов Na внутрь клетки продолжается до момента электрохимического равновесия по иону Na. Амплитуда потенциала действия не зависит от силы раздражителя, она зависит от концентрации ионов Na и от степени проницаемости мембраны к ионам Na. Нисходящая фаза (фаза реполяризации) возвращает заряд мембраны к исходному знаку. При достижении электрохимического равновесия по ионам Na происходит инактивация активационных ворот, снижается проницаемость к ионам Na и возрастает проницаемость к ионам K, натрий-калиевый насос вступает в действие и восстанавливает заряд клеточной мембраны. Полного восстановления мембранного потенциала не происходит.

    В процессе восстановительных реакций на клеточной мембране регистрируются следовые потенциалы – положительный и отрицательный. Следовые потенциалы являются непостоянными компонентами потенциала действия. Отрицательный следовой потенциал – следовая деполяризация в результате повышенной проницаемости мембраны к ионам Na, что тормозит процесс реполяризации. Положительный следовой потенциал возникает при гиперполяризации клеточной мембраны в процессе восстановления клеточного заряда за счет выхода ионов калия и работы натрий-калиевого насоса.

    Источник