Полезные и вредные примеси в сталях и чугунах
Вопросы, рассмотренные в материале:
- Полезные и специальные примеси в стали
- Вредные примеси в стали, которые ухудшают ее свойства
Вредные примеси в стали не только ухудшают ее состав, но и могут привести к последующей деформации изготовленного из нее изделия. Однако нельзя все их рассматривать как нежелательные. Некоторые из них относят к полезным, а от других вообще невозможно избавиться, так как они постоянные. Да и нет необходимости их устранять, поскольку постоянные примеси могут влиять на качественные характеристики стали.
В этой статье мы поговорим о том, какими являются вредные примеси стали и как они влияют на ее состав и характеристики стальных изделий.
Полезные и специальные примеси в стали
В стали встречаются вредные и полезные примеси. Сначала остановимся на полезных, к которым относят марганец и кремний:
- Марганец – это химический элемент, благодаря которому возрастает прокаливаемость стали и снижается влияние серы, оказывающей вредное воздействие на металл.
- Кремний – примесь данного элемента помогает раскислить сталь и, как следствие, повысить ее прочность. Его специально добавляют в металл в ходе его выплавки.
Углеродистая сталь содержит примесь кремния не более 0,35–0,4 % и марганец в количестве 0,5–0,8 %. Переход марганца и кремния в сталь происходит во время раскисления в ходе выплавки. Эти химические элементы соединяются с кислородом закиси железа FеO, а затем, превращаясь в окислы, переходят в шлак, то есть, иначе говоря, раскисляют сталь.
Данный процесс оказывает благоприятное воздействие на свойства стали. За счет дегазации металла кремнием увеличивается ее плотность. Часть химического элемента остается в феррите (твердом растворе) уже после раскисления, что приводит к значительному возрастанию предела текучести. При этом способность к холодной высадке и вытяжке у стали снижается.
По этой причине производители снижают количество кремния в сталях, изготавливаемых для холодной штамповки и высадки. Прочность металла значительно повышается благодаря примеси марганца. Последний сильно уменьшает красноломкость стали, оставляя пластичность практически неизменной. Таким образом, резко падает хрупкость стали при воздействии высокой температуры, которая возникала из-за присутствия серы.
Для получения сталей, имеющих определенные свойства, в металл добавляют специальные примеси. Они носят название легирующих элементов. Стали же именуют легированными.
Остановимся подробно на назначении некоторых элементов:
- Алюминий – его примесь помогает повысить окалино- и жаростойкость стали.
- Медь – увеличивает стойкость стали к коррозии.
- Хром – повышает прочность, твердость сталей, увеличивает стойкость к коррозии, при этом пластичность падает незначительно. Нержавеющей сталь делает большое содержание хрома.
- Никель – повышает пластичность, прочность, делает сталь стойкой к коррозии.
- Вольфрам – при добавлении в сталь создает корбиды (химические соединения повышенной твердости). Они значительно повышают красностойкость и твердость. Под воздействием вольфрама сталь перестает расширяться в процессе нагревания, а хрупкость при отпуске уходит.
- Ванадий – способствует возрастанию плотности, прочности и твердости стали. Он признается прекрасным раскислителем.
- Кобальт – под его воздействием увеличивается жаропрочность, стойкость к ударным нагрузкам, возрастают магнитные свойства.
- Молибден – улучшается сопротивляемость стали к окислению в ходе воздействия на нее высоких температур, возрастает упругость, красностойкость, увеличивается стойкость к коррозии, повышается предел прочности к растяжению.
- Титан – являясь прекрасным раскислителем, он повышает стойкость к коррозии, увеличивает плотность и прочность металла, делает лучше его обрабатываемость.
- Церий – способствует возрастанию пластичности и прочности стали.
- Цирконий (Ц) – воздействует на зернистость стали, давая возможность изготовить металл с установленным размером зерна, делает его мельче.
- Лантан, неодим и цезий – уменьшают пористость стали, сокращают количество серы, делают качество поверхности лучше, а зерно мельче.
Вредные примеси в стали, которые ухудшают ее свойства
Давайте разберемся, какие вредные примеси содержатся в стали. Основными являются фосфор и сера.
- Сера.
Сера (S) содержится в сталях высокого качества в количестве не более 0,02–0,03 %. Для металла общего назначения этот показатель повышается до 0,03–0,04 %. С помощью спецобработки количество серы уменьшается до 0,005 %.
Растворения серы в железе не происходит, а образуется FeS (сульфид железа). Он входит в эвтектику, образующуюся при температуре +988 °С.
При высоком содержании серы сталь становится красноломкой. Это происходит из-за появления на границах зерен сульфидных эвтектик, имеющих низкую способность к плавке. Красноломкость появляется при температуре красного каления стали – +800 °С.
Плохое влияние сера оказывает на свариваемость, пластичность, ударную вязкость, а также поверхность металла. Это особенно заметно, если марганец и углерод содержатся лишь в небольших количествах.
Склонность к сегрегации на границах зерен у серы значительна. По этой причине в ходе нагрева пластичность стали падает. Если металл предназначен для дальнейшей обработки автоматическим механическим способом, то в состав обязательно добавляют серу в количестве от 0,08 % до 0,33 %, так как она способствует возрастанию у подшипниковых сталей усталостной прочности.
Марганец же снижает вредное воздействие серы на сталь. При жидком состоянии сплава он вступает в реакцию с образованием сульфида марганца, температура плавления которого составляет +1620 °С. Она значительно превышает температуру горячей обработки металла (от +800 °С до +1200 °С). При таком нагреве сульфиды марганца достаточно пластичны и просто деформируются.
- Фосфор.
Сегрегация фосфора (Р) в значительно меньшей, чем серы и углерода, степени происходит в ходе затвердевания сталей. Идет его растворение в феррите, из-за чего прочность металла увеличивается. Чем больший процент фосфора содержит сталь, тем выше ее хладноломкость и ниже ударная вязкость, пластичность.
Высокая температура среды позволяет достичь растворимости фосфора в пределах 1,2 %. Чем ниже становится температура, тем меньше растворимость фосфора. Она постепенно опускается до 0,02–0,03 %. Именно такое содержание данного химического элемента наблюдается в сталях. Это может говорить о том, что он, как правило, полностью растворяется в альфа-железе.
Отпускная хрупкость хромистых, хромоникелевых и хромомарганцевых, марганцевых и магниево-кремниевых легированных сталей во многом зависит от сегрегации фосфора по границам зерен. Элемент способствует замедлению распада мартенсита и повышает упрочняемость.
С целью улучшения механической (автоматической) обработки в низколегированные стали добавляют большое содержание фосфора.
При наличии углерода в количестве 0,1 % в конструкционной низколегированной стали фосфор должен увеличивать антикоррозийные свойства, а также прочность металла.
Наличие фосфора в хромоникелевых аустеничных сталях приводит к увеличению предела текучести. При попадании аустеничной нержавеющей стали в среду сильного окислителя присутствие в ее составе фосфора вызывает коррозию на границах зерен. Такое поведение предопределено сегрегацией фосфора на этих границах.
- Углерод.
Вредные примеси в стали – это не только сера и фосфор, но и углерод.
Медленно остывая, сталь приобретает структуру, состоящую их двух фаз – цементита и феррита. Цементит связан в стали с углеродом. Его содержание прямо пропорционально количеству последнего. При этом цементит имеет твердость, значительно превышающую жесткость феррита. Цементит, вернее, входящие в его состав частицы (хрупкие, твердые), увеличивают сопротивляемость деформации, повышая противодействие движению дислокации. Помимо того, снижается вязкость и пластичность металла.
Как следствие, при возрастании процента углерода происходит увеличение твердости стали, пределов ее текучести и прочности, снижение относительных сужения и удлинения, а также ударной вязкости. То есть чем больше углерода, тем легче сталь переходит в хладноломкое состояние. Если содержание углерода в стали колеблется в диапазоне 1,0–1,1 %, то растет твердость металла в отожженном состоянии. При этом предел прочности снижается.
Такое явление, как снижение прочности, наблюдается по причине выделения аустенита вторичного цементита на границах бывшего зерна. Этот цементит делает сплошную сетку в сталях с вышеуказанным составом. В ходе растяжения сетка напрягается и цемент, хрупкий по своей природе, начинает разрушаться. Все это является причиной распада и последующего уменьшения предела прочности. Увеличивая количество углерода, можно добиться уменьшения плотности стали, увеличения электросопротивляемости, коэрцитивной силы, снижения остаточной индукции, теплопроводности и магнитной проницаемости.
- Азот.
Рассматривая вопрос о том, какие вредные примеси присутствуют в стали, нельзя забывать о влиянии азота (N). Под его воздействием в металле образуются нитриды, представляющие собой неметаллические хрупкие инородные тела, которые делают свойства стали значительно хуже.
Однако вредные примеси в стали являются в какой-то мере полезными, а иногда и неустранимыми. К положительным сторонам примеси азота стоит отнести его способность увеличить аустеничную область диаграммы состояния металла. Он делает аустеничную структуру стабильнее. Кроме того, он способен заменить собой никель (но только частично) в рассматриваемых сталях.
Для увеличения прочности низколегированной стали прибегают к добавлению титана, ванадия и ниобия (нитридообразующих элементов). В процессе горячей обработки и последующего охлаждения, взаимодействуя, они создают небольшие карбонитриды и нитриды, придающие стали прочность.
- Олово.
Даже небольшое количество олова (Sn) вредно для стали. В легированных сталях этот элемент способен вызвать отпускную хрупкость. Кроме того, олово сегрегируется на границах зерен стали, уменьшает ее горячую пластичность в аустенитно-ферритной области диаграммы состояния. Непрерывнолитые слитки под воздействием олова имеют низкое качество поверхности.
- Водород.
Обсуждая вредные примеси в стали и их влияние на материал, нельзя забывать, пожалуй, о самом опасном из них – водороде. В процессе сварки этот химический элемент во всех случаях является вредной примесью. Причина заключается в излишнем охрупчивании стали. При проведении сварочных работ водород может попасть в расплав из:
- атмосферы дугового разряда;
- может уже содержаться в металле.
Поглощенный из атмосферы водород, пребывающий в ионизированном и атомарном виде, в ходе кристаллизации значительно уменьшает собственную растворимость. В результате его последующего выделения из материала в нем образуются трещины и поры.
Водород, уже находящийся в металле, может быть в виде гидрида (связанном) или в диффузно-подвижном состоянии (в виде твердого раствора). Молекулярный водород содержится в микронесплошностях материала.
Снизить количество водорода в сварочной зоне можно следующими способами:
- используют окислители атмосферы (применяют специальные руднокислые электроды или работают под защитой CO2);
- покрытия электродов и флюсы дополняют хлоридами и фторидами (ими могут быть соли и плавиковый шпат);
- проводят просушку материалов, предназначенных для сварки (флюса, электродов, газов, проволоки и пр.).
- Кислород.
Вредные примеси в стали включают в себя и кислород, который понижает пластичность металла. Для защиты материала при сварке используют процесс раскисления шва до определенной нормы. В ходе сварки титана, алюминия и прочих высокоактивных металлов мастера делают атмосферу внутри рабочей зоны без кислорода. Используя для этого гелий, аргон, галидные флюсы, они создают вакуум, поскольку для этих металлов достаточно сложно найти раскислители.
- Сурьма.
Сурьма (Sb) оказывает вредное влияние на поверхность стали (непрерывнолитых слитков). Причина заключается в ее сегрегации в процессе затвердевания металла. Когда сталь переходит в твердое состояние, сурьма сегрегирует на границах зерен, что приводит у легированных сталей к отпускной хрупкости.
Почему следует обращаться именно к нам
Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.
Наши производственные мощности позволяют обрабатывать различные материалы:
- цветные металлы;
- чугун;
- нержавеющую сталь.
При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.
Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.
Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.
Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.
Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.
Влияние примесей на свойства
стали и чугуна
Сталь — деформируемый
(ковкий) сплав железа с углеродом (и другими
элементами), характеризующийся эвтектоидным
превращением. Содержание углерода в стали
не более 2,14 %, но не менее 0,022 %. Углерод
придаёт сплавам железа прочность и твёрдость,
снижая пластичность и вязкость.
Учитывая, что в сталь могут быть добавлены
легирующие элементы, сталью называется
содержащий не менее 45 % железа сплав железа
с углеродом и легирующими элементами
(легированная, высоколегированная сталь).
Чугу́н
— сплав железа с углеродом (содержанием
обычно более 2,14 %). Углерод в чугуне
может содержаться в виде цементита
и графита. В зависимости от формы
графита и количества цементита,
выделяют: белый, серый, ковкий и высокопрочные
чугуны. Чугуны содержат постоянные примеси
(Si, Mn, S, P), а в некоторых случаях также легирующие
элементы (Cr, Ni, V, Al и др.). Как правило, чугун
хрупок.
Примеси могут
оказывать на свойства стали как
положительное, так и отрицательное
влияние, поэтому их делят на полезные
и вредные. Полезные примеси в основном
влияют на свойства кристаллов (зерен),
а вредные примеси ухудшают межкристаллитные
(межзеренные) связи.
В сталях большинства
марок главной полезной примесью является
углерод. Такие стали называют углеродистыми.
Содержание углерода в углеродистых сталях
чаще всего составляет 0,05—0,50%, но может
достигать 1% и более (теоретически до 2,14%).
В углеродистых сталях в качестве полезной
примеси также могут содержаться марганец
(0,3—0,6%) и кремний (0,15—0,3%). Содержание вредных
примесей, которыми обычно являются сера,
фосфор, кислород и азот, ограничивают
сотыми и тысячными долями процента.
Полезные
примеси: В первую очередь, это кремний
и марганец.
– Марганец:
Благодаря марганцу в стали повышается
прокаливаемость, а вредное воздействие
серы, наоборот, понижается.
– Кремний:
повышает прочность стали, раскисляя ее.
И фосфор, и
кремний вводится в сталь специально
при выплавке.
Вредные примеси:
К вредным примесям относятся сера и фосфор.
– Сера:
Влияние серы отрицательно сказывается
на пластичности и вязкости стали. Сталь
становится красноломкой при ковке и прокатке.
Но сера может влиять на сталь и положительно.
Она придает стали свойства, более оптимальные
для обработки. Поэтому, в некоторых случаях,
содержание серы все же допустимо (но только
в автоматических сталях неответственного
назначения). В стали сера появляется из
чугуна.
– Фосфор: Негативное влияние
фосфора сказывается на пластичности
стали. Это связано с тем, что тип кристаллической
решетки заметно фосфора заметно отличается
от стали. Фосфор содержится в руде, из
которой выплавляют сталь.
Отрицательно сказываются на качестве
стали и такие газы, как кислород, азот
и водород.
– Кислород:
уменьшает вязкость и пластичность стали.
– Азот: Имеет аналогичное действие.
– Водород: вызывает хрупкость
стали.
Эти примеси могут попадать в
сплав из природных соединений (руд),
например, сера и фосфор; из металлического
лома – хром, никель и др.; в процессе
выплавки и раскисления – углерод,
кремний и марганец. Углерод находится
главным образом в связанном состоянии
в виде цементита. В свободном состоянии
в виде графита он содержится в чугунах.
С увеличением содержания углерода в сталях
возрастают твердость, прочность и уменьшается
пластичность. Сера является вредной примесью.
Она образует легкоплавкую эвтектику
FeS + + Fe, которая при кристаллизации сплава
располагается по границам зерен и при
повторном нагреве расплавляется, что
приводит к образованию трещин и надрывов.
Это явление носит название красноломкости.
Содержание серы должно быть менее
0,06 %. Фосфор ухудшает пластические свойства
сплава, вызывая явление хладноломкости.
Его содержание в стали не должно
превышать 0,08 %. В чугуне допускается
до 0,3 % Р. Азот, кислород и водород
присутствуют в сплавах в составе
оксидов FeO, Si02, А1203, нитридов Fe4N или в свободном
состоянии, при этом они располагаются
в дефектных местах в виде молекулярного
и атомарного газов. Оксиды и нитриды служат
концентраторами напряжений и могут снижать
механические свойства (прочность, пластичность).
Водород растворяется в стали при расплавлении.
При охлаждении сплава растворимость
водорода уменьшается, он накапливается
в микропорах под высоким давлением и
может стать причиной образования внутренних
надрывов в металле (флокенов) и трещин.
Кремний и марганец попадают в железоуглеродистый
сплав при его выплавке и в процессе раскисления.
Кремний повышает предел текучести и уменьшает
склонность к хладноломкости. Кремний
способствует графитизации чугуна. Марганец
образует твердый раствор с железом и
немного повышает твердость и прочность
феррита. Стали классифицируются по химическому
составу, качеству и назначению. По химическому
составу классифицируют главным образом
конструкционные стали, предназначенные
для изготовления деталей машин и металлических
конструкций. Конструкционные стали делят
на углеродистые и легированные. Углеродистые
стали могут быть низкоуглеродистые: С
0,09 … 0,25 %; среднеуглеродистые: С 0,25 … 0,45
% и высокоуглеродистые: С 0,45 … 0,75 %. Легированные
стали условно подразделяют на низколегированные
с содержанием легирующих элементов 2,5
%; среднелегированные – от 2,5 до 10 % и высоколегированные
– более 10 %.
Другие стали, например
инструментальные, с особыми физико-химическими
свойствами по химическому составу обычно
не классифицируются. По назначению стали
подразделяют на конструкционные, инструментальные
и стали и сплавы с особыми свойствами
– жаропрочные, кислотостойкие, износостойкие,
магнитные и др. По качеству различают
стали общего назначения, качественные,
высококачественные и особовысококачественные,
в последнем случае в маркировке указывается
способ выплавки и последующей обработки
стали. Под качеством стали понимают совокупность
свойств, определяемых металлургическим
процессом ее производства. Однородность
химического состава, строения и свойств
стали, а также ее технологичность во многом
зависят от содержания газов (кислорода,
водорода, азота) и вредных примесей – серы
и фосфора. Газы являются скрытыми количественно
трудноопределяемыми примесями, поэтому
нормы содержания вредных примесей служат
основными показателями для разделения
сталей по качеству. Стали обыкновенного
качества содержат до 0,05 % S и 0,04 % Р, качественные
– не более 0,04 % S и 0,035 % Р, высококачественные
-не более 0,025 % S и 0,025 % Р, особовысококачественные
– не более 0,015 % S и 0,025 % Р. Стали углеродистые
обыкновенного качества (ГОСТ 380-88) обозначаются
индексом Ст и порядковым номером, например,
Ст1, СтЗ, Ст5. Чем выше номер в обозначении
стали, тем выше ее прочность и ниже пластичность.
Условные обозначения химических
элементов:
азот ( N ) – А
алюминий ( Аl ) – Ю
бериллий ( Be ) – Л
бор ( B ) – Р
ванадий ( V ) – Ф
висмут ( Вi ) – Ви
вольфрам ( W ) – В
галлий ( Ga ) – Гл
иридий ( Ir ) – И
кадмий ( Cd ) – Кд
кобальт ( Co ) – К
кремний ( Si ) – C
магний ( Mg ) – Ш
марганец ( Mn ) – Г
свинец ( Pb ) – АС
медь ( Cu ) – Д
молибден ( Mo ) – М
никель ( Ni ) – Н
ниобий ( Nb) – Б
селен ( Se ) – Е
титан ( Ti ) – Т
углерод ( C ) – У
фосфор ( P ) – П
хром ( Cr ) – Х
цирконий ( Zr ) – Ц
Углерод находится в стали обычно
в виде химического соединения Fe3C,
называемого цементитом. С увеличением
содержания углерода до 1,2% твердость,
прочность и упругость стали увеличиваются,
но пластичность и сопротивление удару
понижаются, а обрабатываемость ухудшается,
ухудшается и свариваемость.
Кремний, если он содержится в стали
в небольшом количестве, особого
влияния на ее свойства не оказывает.
При повышении содержания кремния
значительно улучшаются упругие
свойства, магнитопроницаемость, сопротивление
коррозии и стойкость против окисления
при высоких температурах.
Марганец, как и кремний, содержится
в обыкновенной углеродистой стали
в небольшом количестве и особого
влияния на ее свойства также не
оказывает. Однако марганец образует с
железом твердый раствор и несколько повышает
твердость и прочность стали, незначительно
уменьшая ее пластичность. Марганец связывает
серу в соединение MnS, препятствуя образованию
вредного соединения FeS. Кроме того, марганец
раскисляет сталь. При высоком содержании
марганца сталь приобретает исключительно
большую твердость и сопротивление износу.
Сера является вредной примесью.
Она находится в стали главным
образом в виде FeS. Это соединение
сообщает стали хрупкость при высоких
температурах, например при ковке, – свойство,
которое называется красноломкостью.
Сера увеличивает истираемость стали,
понижает сопротивление усталости и уменьшает
коррозионную стойкость.
В углеродистой стали допускается
серы не более 0,06-0,07%.
Увеличение хрупкости стали
при повышенном содержании серы используется
иногда для улучшения обрабатываемости
на станках, благодаря чему повышается
производительность при обработке.
Фосфор также является вредной
примесью. Он образует с железом
соединение Fe3P, которое растворяется
в железе. Кристаллы этого химического
соединения очень хрупки. Обычно они располагаются
по границам зерен стали, резко ослабляя
связь между ними, вследствие чего сталь
приобретает очень высокую хрупкость
в холодном состоянии (хладноломкость).
Особенно сказывается отрицательное влияние
фосфора при высоком содержании углерода.
Обрабатываемость стали фосфор несколько
улучшает, так как способствует отделению
стружки.
Легирующие элементы и их влияние
на свойства стали.
Хром – наиболее дешевый и распространенный
элемент. Он повышает твердость и прочность,
незначительно уменьшая пластичность,
увеличивает коррозионную стойкость;
содержание больших количеств хрома делает
сталь нержавеющей и обеспечивает устойчивость
магнитных сил.
Никель сообщает стали коррозионную
стойкость, высокую прочность и пластичность,
увеличивает прокаливаемость, оказывает
влияние на изменение коэффициента теплового
расширения. Никель – дорогой металл,
его стараются заменить более дешевым.
Вольфрам образует в стали очень
твердые химические соединения – карбиды,
резко увеличивающие твердость и красностойкость.
Вольфрам препятствует росту зерен при
нагреве, способствует устранению хрупкости
при отпуске. Это дорогой и дефицитный
металл.
Ванадий повышает твердость и прочность,
измельчает зерно. Увеличивает плотность
стали, так как является хорошим раскислителем,
он дорог и дефицитен.
Кремний в количестве свыше 1% оказывает
особое влияние на свойства стали: содержание
1-1,5% Si увеличивает прочность, при
этом вязкость сохраняется. При большем
содержании кремния увеличивается электросопротивление
и магнитопроницаемость. Кремний увеличивает
также упругость, кислостойкость, окалиностойкость.
Марганец при содержании свыше
1% увеличивает твердость, износоустойчивость,
стойкость против ударных нагрузок, не
уменьшая пластичности.
Кобальт повышает жаропрочность, магнитные
свойства, увеличивает сопротивление
удару.
Молибден
увеличивает красностойкость, упругость,
предел прочности на растяжение, антикоррозионные
свойства и сопротивление окислению при
высоких температурах.
Титан повышает
прочность и плотность стали,
способствует измельчению зерна, является
хорошим раскислителем, улучшает обрабатываемость
и сопротивление коррозии.
Ниобий
улучшает кислостойкость и способствует
уменьшению коррозии в сварных конструкциях.
Алюминий
повышает жаростойкость и окалиностойкость.
Медь увеличивает
антикоррозионные свойства, она вводится
главным образом в строительную
сталь.
Церий повышает прочность и особенно пластичность.
Цирконий
оказывает особое влияние на величину
и рост зерна в стали, измельчает
зерно и позволяет получать сталь
с заранее заданной зернистостью.
Лантан, цезий,
неодим уменьшают пористость, способствуют
уменьшению содержания серы в стали,
улучшают качество поверхности, измельчают
зерно.
Свойства чугунов зависят от
их химического состава, т.е. от содержания
в них углерода, кремния, марганца,
фосфора, серы. Углерод, химически связанный
с железом, образует цементит FesC. Цементит
придает чугуну хрупкость, но значительно
повышает твердость. Такой чугун, имеющий
в изломе блестящий металлический оттенок,
называют белым. Белые чугуны не обрабатываются
режущим инструментом. Углерод в чугуне
может находиться в свободном состоянии
в виде графита. Цементит в таких чугунах
не образуется, поэтому их твердость значительно
ниже твердости белых чугунов; такие чугуны
хорошо обрабатываются резанием. Присутствие
графита придает чугуну в изломе серый,
матовый оттенок-чугун в данном случае
называют серым. Кремний способствует
выделению углерода в чугуне в виде графита,
улучшает литейные свойства чугуна, понижает
его твердость. Марганец препятствует
выделению углерода в чугуне в виде графита
и способствует образованию цементита,
поэтому повышает твердость чугуна и при
определенном содержании его увеличивает
прочность. Фосфор, соединяясь с железом,
образует легкоплавкую хрупкую и твердую
составляющую, которая располагается
по границам зерен чугуна, вследствие
чего у чугуна значительно повышается
хрупкость и твердость, увеличивается
износостойкость. Образующаяся легко
плавкая составляющая улучшает заполняемость
литейных форм жидким чугуном. Фосфор
вредная примесь в чугуне. Сера тормозит
выделение углерода в чугуне в виде графита.
Образуя по границам зерен чугуна хрупкую
составляющую, сера снижает механические
свойства, способствует образованию трещин
в отливках. Вредное влияние серы может
быть нейтрализовано повышенным содержанием
марганца, с которым сера легко образует
тугоплавкое соединение.
Фазовая диаграмма стабильного
равновесия Fe — С
Фазовая диаграмма состояния Fe —
С (стабильная) представлена на рисунке
выше (штриховые линии соответствуют выделению
графита, а сплошные — цементита). Температуры
плавления чугунов значительно ниже (на
300…400 °С), чем у стали.
Микроструктура чугунов зависит
от скорости охлаждения металла: при быстром
охлаждении будет белый чугун (углерод
находится в химически связанном состоянии
в виде цементита и ледебурита), а при медленном
охлаждении будет серый чугун (углерод
находится в виде графита). Серые чугуны
делятся на высокопрочные и ковкие.
Влияние химических элементов на свойства
чугуна.
Серый чугун:
Углерод: Повышенное содержание углерода
приводит к уменьшению прочности, твердости
и увеличению пластичности; углерод улучшает
литейные свойства чугуна
Кремний: Кремний (с учетом содержания
углерода) способствует выделению графита
и снижает твердость, а также уменьшает
усадку; повышенное содержание кремния
снижает пластичность и несколько увеличивает
твердость