Полезная работа совершаемая с помощью механизма всегда

Полезная работа совершаемая с помощью механизма всегда thumbnail

Урок физики по теме

«Коэффициент полезного действия механизма»

Цели урока:

  • Систематизация знаний по теме “Простые механизмы. КПД”: формировать умение находить КПД различных механизмов; повторить основные формулы темы с помощью решения задач; обеспечить усвоение формулы для расчёта КПД; формировать у ребят умение осуществлять самоконтроль с помощью конкретных вопросов и использования дидактического материала.

  • Совершенствовать навыки самостоятельной работы, активизировать мышление школьников, умение самостоятельно формулировать выводы, развивать речь. Развитие умения правильно оформлять и решать задачи.

  • Развитие чувства взаимопонимания и взаимопомощи в процессе совместного решения задач; развитие навыка работы в паре, развивать мотивацию изучения физики, используя разнообразные приёмы деятельности.

Оборудование: АРМ учителя, презентация к уроку, модели из Лего-конструктора, ЦОРы.

Ход урока

  1. Организационный момент. (1 мин)

Сегодня на уроке мы вспомним всё о простых механизмах, введём понятие КПД, решим ряд задач по этой теме.

1 сл. hello_html_6f3ba575.jpg

  1. Проверка домашнего задания и актуализация знаний. (10-12 мин)

Проверка домашнего задания: два ученика выходят к доске и готовятся отвечать по плану (на демонстрационном столе находятся модели рычага, блоки из Лего-конструктора):

2 сл. hello_html_6b172301.jpg

а) блок: виды блоков, определение, выигрыш в силе, выигрыш в работе, применение.

б) рычаг: определение, условие равновесия рычага, выигрыш в работе, применение.

Заслушиваются ответы учащихся, готовящихся у доски, выставляются оценки.

Рассматривая устройство и действие рычага, мы не учитываем трение, а также вес рычага. В идеальных условиях работа, совершённая приложенной силой равна работе по подъёму или преодолению какого-либо сопротивления.

  1. Объяснение нового материала.

На практике совершённая с помощью механизма полная работа всегда несколько больше полезной. Часть работы совершается против силы трения в механизме и по перемещению его отдельных частей. Например, подвижному блоку приходится дополнительно совершать работу по подъёму самого блока, верёвки и преодолении силы трения в оси блока (рисунок 1).

3 сл. hello_html_m4d8db147.jpg4 сл. hello_html_m791185ac.jpg 5 сл. hello_html_m70654155.jpg

Введём обозначения: Ап – полезная работа, Аз – полная (затраченная) работа, тогда для любого механизма Ап < Аз.

Отношение полезной работы к полной работе называется коэффициентом полезного действия механизма (КПД).

КПД =

КПД выражают в процентах и обозначают греческой буквой ἠ.

ἠ =*100% – формула для расчёта КПД простого механизма.

КПД любого механизма всегда меньше 100%, поэтому при конструировании механизма, стремятся увеличить КПД, для чего уменьшают трение в осях механизмов и их вес.

  1. Закрепление.

6сл.hello_html_31c4340b.jpg7сл.hello_html_mfda8d0e.jpg8сл.hello_html_mab260a7.jpg

1.Задача.

Ведро с песком массой 24,5 поднимают при помощи неподвижного блока на высоту 10 м, действуя на веревку силой 250 Н .Вычислите КПД установки.

Решаем задачу, используя алгоритм:

-Какую работу будем считать в задаче полезной?

-Полезной будем считать работу по подъему ведра с песком на высоту h.

-Какую работу будем считать затраченной?

-Затраченной будем считать работу по перемещению свободного конца веревки.

-Какой закон запишем первым в решении, используя алгоритм?

-Закон, определяющий КПД .

-Сравните расстояние, на которое перемещается ведерко с песком и свободны конец веревки.

-Расстояние, на которое перемещается ведерко с песком и свободный конец веревки равны.

После обсуждения решаем совместно с классом у доски

Дано Формула: Решение:

m = 24,5 кг η = Ап /Aз *100% F = 24,5кг * 9,8 Н /кг  245 Н

h = 10 м Ап = P* h Aп = 245 Н* 10 м » 2450 Дж

F = 250 H Aз =F * h Аз = 250 Н* 10 м =2500Дж

g = 9,8 H/кг F = m* g η= 2450 / 2500*100% » 98%

η -? Ответ: η » 98%

2 Задача:

При равномерном перемещении груза массой 15 кг по наклонной плоскости динамометр, привязанный к грузу, показывает силу, равную 40 Н. Вычислите КПД наклонной плоскости, если ее длина 1,8 м, и высота 30см.

-Какую работу будем считать в задаче полезной?

-Полезной будем считать работу по подъему груза на высоту h.

-Какую работу будем считать затраченной?

-Затраченной будем считать работу по перемещению груза по длине наклонной плоскости S.

-Какой закон запишем первым в решении, используя алгоритм?

-Закон, определяющий КПД .

Учащиеся решают задачу после обсуждения самостоятельно

Дано Формула: Решение:

m = 15 кг η = Ап /Aз * 100% F = 15кг * 9,8 Н /кг » 150 Н

h=30 см=0,3м Ап = P* h Aп = 150 Н* 0, 3см » 45 Дж

F = 40 H Р = m* g Аз = 40 Н* 1,8м =72 Дж

S=1,8 м Aз =F * S η = 45 / 72 * 100% » 62,5 %

g = 9,8 H/кг

η -? Ответ : η= 62,5%

3.Задача.

Неподвижным блоком равномерно поднимают груз массой 72кг на высоту 2м, затрачивая при этом работу 1600 Дж. Вычислите КПД блока.

Дано Формула: Решение:

m = 72 кг η = Ап /Aз *100% F = 72кг * 9,8 Н /кг  720 Н

h = 2 м Ап = P* h Aп = 720 Н* 2 м  !440 Дж

Аз =1600H η= 1440 / 1600*100% » 90%

g = 9,8 H/кг F = m* g

η -? Ответ: η » 90%

Назовите, какие значения могут принимать КПД простых механизмов?

-Неподвижный блок имеет η-90-98%; подвижный блок – η=75%; наклонная плоскость η=62,5%

4. Экспериментальная задача.

9 сл. hello_html_m6513200.jpg 10 сл. hello_html_m51d90cd4.jpg

Вычислите КПД рычага, сконструированного из Лего – конструктора (рисунок 2). Ученики по – очереди у доски измеряет плечи рычага, вес груза, силу, приложенную ко второму плечу рычага. Выполняется эксперимент по подъёму груза и замеряется высота, на которую поднимают груз и опустилась точка приложения силы.

5. Экспериментальная задача.

Вычислите КПД подъёмного крана, сконструированного из простого механизма, выполнив соответствующие измерения (рисунок 3).

  1. Подведение итогов. Рефлексия. Запись домашнего задания.

11 сл. hello_html_m42fecff8.jpg

Карпенко Людмила Александровна, МОУ СОШ №15 Страница 5

Источник

1. Почему полезная работа, которую должен выполнить механизм, всегда меньше полной – той, которую он совершает на практике:
а) потому что при расчёте полезной работы механизма не учитывается трение, а также его собственный вес +
б) потому что прилагают к механизму силу, большую, чем надо
в) потому что действует «золотое правило» механики

2. Коэффициентом полезного действия механизма называют:
а) разность полной работы и полезной
б) отношение полезной работы к полной +
в) отношение путей, пройденных точками приложения сил, действующих на механизм

3. КПД механизма вычисляют по формуле:
а) N = A/t
б) F1/F2 = l2/l1
в) η = AП/AЗ +

4. Поднимая с помощью подвижного и неподвижного блоков ящик массой 18 кг на высоту 5 м, вытянули часть каната длиной 10 м. При этом действовали силой F = 100 Н. Каков КПД этой системы блоков:
а) 90% +
б) 9%
в) 94%

5. По наклонной плоскости (h = 3 м и l = 12 м) подняли груз массой 40 кг, действуя на него силой F = 120 Н. Найдите КПД наклонной плоскости:
а) 89%
б) 80%
в) 83% +

6. Валун массой 120 кг приподняли рычагом, плечи которого относятся как 1 : 2, на 10 см. Модуль приложенной силы F = 650 Н. Каков КПД рычага в этом случае:
а) 91,5%
б) 92,3% +
в) 90%

7. Определяя КПД одного и того же механизма, ученики получили разные его значения: 85% (№ 1), 95% (№ 2), 102% (№ 3), 98% (№ 4). О каком из этих значений можно сразу же сказать, что оно ошибочно:
а) №2
б) №1
в) №3 +

8. Характеристика эффективности системы (устройства, машины) в отношении преобразования или передачи энергии:
а) коэффициент полезного действия +
б) коэффициент полезной работы
в) коэффициент полезных свойств

9. Какая физическая величина характеризует экономичность двигателя:
а) мощность
б) произведенная двигателем механическая работа
в) коэффициент полезного действия +

10. Коэффициент полезного действия – это физическая величина, равная:
а) совершенной двигателем полезной работе
б) отношению произведенной двигателем полезной работы к полученной от нагревателя энергии
в) количеству теплоты, выделенной при сгорании топлива

11. Определите КПД двигателя внутреннего сгорания, который производит 46 • 10 в шестой степени Дж полезной работы, затрачивая 3 кг бензина:
а) 33,3% +
б) 30%
в) 35%

12. Сколько дров придется сжечь в топке парового котла, чтобы турбина, коэффициент полезного действия которой 32%, произвела 3,2 • 10 в восьмой степени Дж полезной работы:
а) 10 кг
б) 100 кг +
в) 200 кг

13. Почему (указать главную причину) КПД теплового двигателя не может быть равен 100%:
а) потому что пар (газ) отдает в тепловом двигателе только часть своей внутренней энергии и должен быть отведен в холодильник, чтобы новая порция пара, могла произвести работу
б) потому что всегда существует трение в движущихся деталях двигателя
в) потому что часть количества теплоты, выделяющегося при сгорании топлива, теряется – передается окружающим нагреватель телам

14. Трубоукладчик равномерно опускает в траншею газовую трубу массой 120 кг на глубину 1,5 м. Благодаря использованию подвижного и неподвижного блоков трос, на котором удерживаются трубы, натянут с силой 640 Н и опущен на 3 м. Какова полезная работа трубоукладчика:
а) 1 900 Дж
б) 1 600 Дж
в) 1 800 Дж +

15. Трубоукладчик равномерно опускает в траншею газовую трубу массой 120 кг на глубину 1,5 м. Благодаря использованию подвижного и неподвижного блоков трос, на котором удерживаются трубы, натянут с силой 640 Н и опущен на 3 м. Вычислите КПД блоков трубоукладчика:
а) 94% +
б) 90%
в) 91%

16. Неподвижным блоком равномерно поднимают груз массой 72 кг на высоту 2 м, затрачивая работу 1600 Дж. Вычислите КПД блока. Считайте g = 10 м/с2 (10 Н/кг):
а) 96%
б) 90% +
в) 94%

17. Выполняя лабораторную работу по определению КПД наклонной плоскости, ученик измерил длину наклонной плоскости (l = 90 см) и ее высоту (h = 30 см). После этого он груз весом 3 Н переместил по наклонной плоскости, действуя силой 2 Н. Вычислите полезную работу:
а) 1,9 Дж
б) 2 Дж
в) 0,9 Дж +

18. Выполняя лабораторную работу по определению КПД наклонной плоскости, ученик измерил длину наклонной плоскости (l = 90 см) и ее высоту (h = 30 см). После этого он груз весом 3 Н переместил по наклонной плоскости, действуя силой 2 Н. Вычислите полную работу:
а) 2,8 Дж
б) 1,8 Дж +
в) 0,8 Дж

19. Выполняя лабораторную работу по определению КПД наклонной плоскости, ученик измерил длину наклонной плоскости (l = 90 см) и ее высоту (h = 30 см). После этого он груз весом 3 Н переместил по наклонной плоскости, действуя силой 2 Н. Каков КПД наклонной плоскости:
а) 25%
б) 30%
в) 50% +

20. Трубоукладчик равномерно опускает в траншею газовую трубу массой 120 кг на глубину 1,5 м. Благодаря использованию подвижного и неподвижного блоков трос, на котором удерживаются трубы, натянут с силой 640 Н и опущен на 3 м. Вычислите вес трубы. Считайте g = 10 м/с2 (10 Н/кг):
а) 1 300 Н
б) 1 200 Н +
в) 1 000 Н

21. Трубоукладчик равномерно опускает в траншею газовую трубу массой 120 кг на глубину 1,5 м. Благодаря использованию подвижного и неподвижного блоков трос, на котором удерживаются трубы, натянут с силой 640 Н и опущен на 3 м. Какова полная работа трубоукладчика:
а) 1 920 Дж +
б) 1 820 Дж
в) 192 Дж

22. При равномерном перемещении груза массой 40 кг, подвешенного к короткому плечу рычага, к длинному плечу приложили силу 250 Н. При этом груз поднялся на высоту 50 см, а точка приложения силы опустилась на 1 м. Каков вес поднятого груза:
а) 200 Н
б) 400 Н +
в) 4 000 Н

23. При равномерном перемещении груза массой 40 кг, подвешенного к короткому плечу рычага, к длинному плечу приложили силу 250 Н. При этом груз поднялся на высоту 50 см, а точка приложения силы опустилась на 1 м. Какова полезная работа:
а) 2 000 Дж
б) 400 Дж
в) 200 Дж +

24. При равномерном перемещении груза массой 40 кг, подвешенного к короткому плечу рычага, к длинному плечу приложили силу 250 Н. При этом груз поднялся на высоту 50 см, а точка приложения силы опустилась на 1 м. Вычислите полную работу:
а) 500 Дж
б) 250 Дж +
в) 2 500 Дж

25. При равномерном перемещении груза массой 40 кг, подвешенного к короткому плечу рычага, к длинному плечу приложили силу 250 Н. При этом груз поднялся на высоту 50 см, а точка приложения силы опустилась на 1 м. Вычислите КПД рычага:
а) 60%
б) 70%
в) 80% +

26. Идеальная тепловая машина Карно имеет КПД 40%. Средняя мощность передачи теплоты холодильнику составляет 800 Вт. Какое количество теплоты получает рабочее тело от нагревателя за 20 с:
а) 25 мДж
б) 26,7 кДж +
в) 400 Дж

27. Тепловая машина с КПД 50% за цикл работы отдает холодильнику 100 Дж. Какое количество теплоты за цикл машина получает от нагревателя:
а) 200 Дж +
б) 250 Дж
в) 150 Дж

28. Температура нагревателя идеальной тепловой машины 425 К, а температура холодильника 300 К. Двигатель получил от нагревателя количество теплоты 40 кДж. Какую работу совершило рабочее тело (кДж):
а) 18
б) 15
в) 12 +

29. Тепловая машина с КПД 50% за цикл работы продолжительностью 10 с получает от нагревателя 500 Дж. Какова средняя мощность, с которой теплота передаётся холодильнику:
а) 25 +
б) 20
в) 15

30. В тепловой машине температура нагревателя 600 K, температура холодильника на 200 K меньше, чем у нагревателя. Максимально возможный КПД машины равен:
а) 1/3
б) 2/3 +
в) ¾

Источник

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: простые механизмы, КПД механизма.

Механизм – это приспособление для преобразования силы (её увеличения или уменьшения).
Простые механизмы – это рычаг и наклонная плоскость.

Рычаг.

Рычаг – это твёрдое тело, которое может вращаться вокруг неподвижной оси. На рис. 1) изображён рычаг с осью вращения . К концам рычага (точкам и ) приложены силы и . Плечи этих сил равны соответственно и .

Условие равновесия рычага даётся правилом моментов: , откуда

.

Полезная работа совершаемая с помощью механизма всегда
Рис. 1. Рычаг

Из этого соотношения следует, что рычаг даёт выигрыш в силе или в расстоянии (смотря по тому, с какой целью он используется) во столько раз, во сколько большее плечо длиннее меньшего.

Например, чтобы усилием 100 Н поднять груз весом 700 Н, нужно взять рычаг с отношением плеч 7 : 1 и положить груз на короткое плечо. Мы выиграем в силе в 7 раз, но во столько же раз проиграем в расстоянии: конец длинного плеча опишет в 7 раз большую дугу, чем конец короткого плеча (то есть груз).

Примерами рычага, дающего выигрыш в силе, являются лопата, ножницы, плоскогубцы. Весло гребца – это рычаг, дающий выигрыш в расстоянии. А обычные рычажные весы являются равноплечим рычагом, не дающим выигрыша ни в расстоянии, ни в силе (в противном случае их можно использовать для обвешивания покупателей).

Неподвижный блок.

Важной разновидностью рычага является блок – укреплённое в обойме колесо с жёлобом, по которому пропущена верёвка. В большинстве задач верёвка считается невесомой нерастяжимой нитью.

На рис. 2 изображён неподвижный блок, т. е. блок с неподвижной осью вращения (проходящей перпендикулярно плоскости рисунка через точку ).

Полезная работа совершаемая с помощью механизма всегда

На правом конце нити в точке закреплён груз весом . Напомним, что вес тела – это сила, с которой тело давит на опору или растягивает подвес. В данном случае вес прило жен к точке , в которой груз крепится к нити.

К левому концу нити в точке приложена сила .

Плечо силы равно , где – радиус блока. Плечо веса равно . Значит, неподвижный блок является равноплечим рычагом и потому не даёт выигрыша ни в силе, ни в расстоянии: во-первых, имеем равенство , а во-вторых, в процессе движении груза и нити перемещение точки равно перемещению груза.

Зачем же тогда вообще нужен неподвижный блок? Он полезен тем, что позволяет изменить направление усилия. Обычно неподвижный блок используется как часть более сложных механизмов.

Подвижный блок.

На рис. 3 изображён подвижный блок, ось которого перемещается вместе с грузом. Мы тянем за нить с силой , которая приложена в точке и направлена вверх. Блок вращается и при этом также движется вверх, поднимая груз, подвешенный на нити .

Полезная работа совершаемая с помощью механизма всегда

В данный момент времени неподвижной точкой является точка , и именно вокруг неё поворачивается блок (он бы “перекатывается” через точку ). Говорят ещё, что через точку проходит мгновенная ось вращения блока (эта ось направлена перпендикулярно плоскости рисунка).

Вес груза приложен в точке крепления груза к нити. Плечо силы равно .

А вот плечо силы , с которой мы тянем за нить, оказывается в два раза больше: оно равно . Соответственно, условием равновесия груза является равенство (что мы и видим на рис. 3: вектор в два раза короче вектора ).

Следовательно, подвижный блок даёт выигрыш в силе в два раза. При этом, однако, мы в те же два раза проигрываем в расстоянии: чтобы поднять груз на один метр, точку придётся переместить на два метра (то есть вытянуть два метра нити).

У блока на рис. 3 есть один недостаток: тянуть нить вверх (за точку ) – не самая лучшая идея. Согласитесь, что гораздо удобнее тянуть за нить вниз! Вот тут-то нас и выручает неподвижный блок.

Полезная работа совершаемая с помощью механизма всегда

На рис. 4 изображён подъёмный механизм, который представляет собой комбинацию подвижного блока с неподвижным. К подвижному блоку подвешен груз, а трос дополнительно перекинут через неподвижный блок, что даёт возможность тянуть за трос вниз для подъёма груза вверх. Внешнее усилие на тросе снова обозначено вектором .

Принципиально данное устройство ничем не отличается от подвижного блока: с его помощью мы также получаем двукратный выигрыш в силе.

Наклонная плоскость.

Как мы знаем, тяжёлую бочку проще вкатить по наклонным мосткам, чем поднимать вертикально. Мостки, таким образом, являются механизмом, который даёт выигрыш в силе.

В механике подобный механизм называется наклонной плоскостью. Наклонная плоскость – это ровная плоская поверхность, расположенная под некоторым углом к горизонту. В таком случае коротко говорят: “наклонная плоскость с углом “.

Найдём силу, которую надо приложить к грузу массы , чтобы равномерно поднять его по гладкой наклонной плоскости с углом . Эта сила , разумеется, направлена вдоль наклонной плоскости (рис. 5).

Полезная работа совершаемая с помощью механизма всегда

Выберем ось так, как показано на рисунке. Поскольку груз движется без ускорения, действующие на него силы уравновешены:

.

Проектируем на ось :

,

откуда

.

Именно такую силу нужно приложить, что двигать груз вверх по наклонной плоскости.

Чтобы равномерно поднимать тот же груз по вертикали, к нему нужно приложить силу, равную . Видно, что , поскольку . Наклонная плоскость действительно даёт выигрыш в силе, и тем больший, чем меньше угол .

Широко применяемыми разновидностями наклонной плоскости являются клин и винт.

Золотое правило механики.

Простой механизм может дать выигрыш в силе или в расстоянии, но не может дать выигрыша в работе.

Например, рычаг с отношением плеч 2 : 1 даёт выигрыш в силе в два раза. Чтобы на меньшем плече поднять груз весом , нужно к большему плечу приложить силу . Но для поднятия груза на высоту большее плечо придётся опустить на , и совершённая работа будет равна:

т. е. той же величине, что и без использования рычага.

В случае наклонной плоскости мы выигрываем в силе, так как прикладываем к грузу силу , меньшую силы тяжести. Однако, чтобы поднять груз на высоту над начальным положением, нам нужно пройти путь вдоль наклонной плоскости. При этом мы совершаем работу

т. е. ту же самую, что и при вертикальном поднятии груза.

Данные факты служат проявлениями так называемого золотого правила механики.

Золотое правило механики. Ни один из простых механизмов не даёт выигрыша в работе. Во сколько раз выигрываем в силе, во столько же раз проигрываем в расстоянии, и наоборот.

Золотое правило механики есть не что иное, как простой вариант закона сохранения энергии.

КПД механизма.

На практике приходится различать полезную работу A полезн, которую нужно совершить при помощи механизма в идеальных условиях отсутствия каких-либо потерь, и полную работу Aполн,
которая совершается для тех же целей в реальной ситуации.

Полная работа равна сумме:
-полезной работы;
-работы, совершённой против сил трения в различных частях механизма;
-работы, совершённой по перемещению составных элементов механизма.

Так, при подъёме груза рычагом приходится вдобавок совершать работу по преодолению силы трения в оси рычага и по перемещению самого рычага, имеющего некоторый вес.

Полная работа всегда больше полезной. Отношение полезной работы к полной называется коэффициентом полезного действия (КПД) механизма:

=Aполезн/Аполн.

КПД принято выражать в процентах. КПД реальных механизмов всегда меньше 100%.

Вычислим КПД наклонной плоскости с углом при наличии трения. Коэффициент трения между поверхностью наклонной плоскости и грузом равен .

Пусть груз массы равномерно поднимается вдоль наклонной плоскости под действием силы из точки в точку на высоту (рис. 6). В направлении, противоположном перемещению, на груз действует сила трения скольжения .

Полезная работа совершаемая с помощью механизма всегда

Ускорения нет, поэтому силы, действующие на груз, уравновешены:

.

Проектируем на ось X:

. (1)

Проектируем на ось Y:

. (2)

Кроме того,

, (3)

Из (2) имеем:

.

Тогда из (3):

.

Подставляя это в (1), получаем:

.

Полная работа равна произведению силы F на путь, пройденный телом вдоль поверхности наклонной плоскости:

Aполн=.

Полезная работа, очевидно, равна:

Аполезн=.

Для искомого КПД получаем:

Источник