Полезная мощность двигателя при равномерном движении
Второй закон Ньютона в импульсной форме позволяет определить, как меняется скорость тела по модулю и направлению, если в течение некоторого времени на него действует определенная сила:
Работа силы
В механике также важно уметь вычислять изменение скорости по модулю, если при перемещении тела на некоторый отрезок на него действует некоторая сила. Воздействия на тела сил, приводящих к изменению модуля их скорости, характеризуется величиной, зависящей как от сил, так и от перемещений. Эту величину в механике называют работой силы.
Работа силы обозначается буквой А. Это скалярная физическая величина. Единица измерения — Джоуль (Дж).
Работа силы равна произведению модуля силы, модуля перемещения и косинусу угла между ними:
Важно!
Механическая работа совершается, если:
- На тело действует сила.
- Под действием этой силы тело перемещается.
- Угол между вектором силы и вектором перемещения не равен 90 градусам (потому что косинус прямого угла равен нулю).
Внимание! Если к телу приложена сила, но под ее действием тело не начинает движение, механическая работа равна нулю.
Пример №1. Груз массой 1 кг под действием силы 30 Н, направленной вертикально вверх, поднимается на высоту 2 м. Определить работу, совершенной этой силой.
Так как перемещение и вектор силы имеют одно направление, косинус угла между ними равен единице. Отсюда:
Работа различных сил
Любая сила, под действием которой перемещается тело, совершает работу. Рассмотрим работу основных сил в таблице.
Работа силы тяжести | Модуль силы тяжести: Fтяж = mg Работа силы тяжести: A = mgs cosα |
Работа силы трения скольжения | Модуль силы трения скольжения: Fтр = μN = μmg Работа силы трения скольжения: A = μmgs cosα |
Работа силы упругости | Модуль силы упругости: Fупр = kx Работа силы упругости: |
Работа силы упругости
Работа силы упругости не может быть определена стандартной формулой, так как она может применяться только для постоянной по модулю силы. Сила же упругости меняется по мере сжатия или растяжения пружины. Поэтому берется среднее значение, равное половине суммы сил упругости в начале и в конце сжатия (растяжения):
Нужно также учесть, что перемещение тела под действием силы упругости равно разности удлинения пружины в начале и конце:
s = x1 – x2
Перемещение и направление силы упругости всегда сонаправлены, поэтому угол между ними нулевой. А косинус нулевого угла равен 1. Отсюда работа силы упругости равна:
Работы силы трения покоя
Работы силы трения покоя всегда равна 0, так как под действием этой силы тело не сдвигается с места. Исключение составляет случай, когда покоящееся тело лежит на подвижном предмете, на который действует некоторая сила. Относительно системы координат, связанной с подвижным предметом, работа силы трения покоя будет нулевой. Но относительно системы отсчета, связанной с Землей, эта сила будет совершать работу, так как тело будет двигаться, оставаясь на поверхности движущегося предмета.
Пример №2. Груз массой 100 кг волоком перетащили на 10 м по плоскости, поверхность которой имеет коэффициент трения 0,4. Найти работу, совершенной силой трения скольжения.
A = μmgs cosα = 0,4∙100∙10∙10∙(–1) = –4000 (Дж) = –4 (кДж)
Знак работы силы
Знак работы силы определяется только косинусом угла между вектором силы и вектором перемещения:
- Если α = 0о, то cosα = 1.
- Если 0о < α < 90o, то cosα > 0.
- Если α = 90о, то cosα = 0.
- Если 90о < α < 180o, то cosα < 0.
- Если α = 180о, то cosα = –1.
Работа силы трения скольжения всегда отрицательна, так как сила трения скольжения направлена противоположно перемещению тела (угол равен 180о). Но в геоцентрической системе отсчета работа силы трения покоя будет отличной от нуля и выше нуля, если оно будет покоиться на движущемся предмете (см. рис. выше). В таком случае сила трения покоя будет направлена с перемещением относительно Земли в одну сторону (угол равен 0о). Это объясняется тем, что тело по инерции будет пытаться сохранить покой относительно Земли. Это значит, что направление возможного движения противоположно движению предмета, на котором лежит это тело. А сила трения покоя направлена противоположно направлению возможного движения.
Геометрический смысл работы
Графическое определение
Механическая работа численно равна площади фигуры, ограниченной графиком с осями OF и OX.
A = Sфиг
Мощность
Определение
Мощность — физическая величина, показывающая, какую работу совершает тело в единицу времени. Мощность обозначается буквой N. Единица измерения: Ватт (Вт). Численно мощность равна отношению работы A, совершенной телом за время t:
Рассмотрим частные случаи определения мощности в таблице.
Мощность при равномерном прямолинейном движении тела | Работа при равномерном прямолинейном движении определяется формулой: A = Fтs Fт — сила тяги, s — перемещение тела под действием этой силы. Отсюда мощность равна: |
Мощность при равномерном подъеме груза | Когда груз поднимается, совершается работа, по модулю равная работе силе тяжести. За перемещение в этом случае можно взять высоту. Поэтому: |
Мгновенная мощность при неравномерном движении | Выше мы уже получили, что мощность при постоянной скорости равна произведению этой скорости на силу тяги. Но если скорость постоянно меняется, можно вычислить мгновенную мощность. Она равна произведению силы тяги на мгновенную скорость: |
Мощность силы трения при равномерном движении по горизонтали | Мощность силы трения отрицательна так же, как и работа. Это связано с тем, что угол между векторами силы трения и перемещения равен 180о (косинус равен –1). Учтем, что сила трения скольжения равна произведению силы нормальной реакции опоры на коэффициент трения: |
Пример №3. Машина равномерно поднимает груз массой 10 кг на высоту 20 м за 40 с. Чему равна ее мощность?
Коэффициент полезного действия
Не вся работа, совершаемая телами, может быть полезной. В реальном мире на тела действует несколько сил, препятствующих совершению работы другой силой. К примеру, чтобы переместить груз на некоторое расстояние, нужно совершить работу гораздо большую, чем можно получить при расчете по формулам выше.
Определения:
- Работа затраченная — полная работа силы, совершенной над телом (или телом).
- Работа полезная — часть полной работы силы, которая вызывает непосредственно перемещение тела.
- Коэффициент полезного действия (КПД) — процентное отношение полезной работы к работе затраченной. КПД обозначается буквой «эта» — η. Единицы измерения эта величина не имеет. Она показывает эффективность работы механизма или другой системы, совершающей работу, в процентах.
КПД определяется формулой:
Работа может определяться как произведение мощности на время, в течение которого совершалась работа:
A = Nt
Поэтому формулу для вычисления КПД можно записать в следующем виде:
Частые случаи определения КПД рассмотрим в таблице ниже:
Устройство | Работа полезная и полная | КПД |
Неподвижный блок, рычаг | Aполезн = mgh Асоверш. | |
Наклонная плоскость | Aполезн = mgh Асоверш. = Fl l — совершенный путь (длина наклонной плоскости). |
Пример №4. Определите полезную мощность двигателя, если его КПД равен 40%, а его мощность по паспорту равна 100 кВт.
В данном случае необязательно переводить единицы измерения в СИ. Но в таком случае ответ мы тоже получим в кВт. Из этой формулы выразим полезную мощность:
Алиса Никитина | ???? Скачать PDF |
Иметь представление о мощности при прямолинейном и криволинейном перемещениях, о мощности полезной и затраченной, о коэффициенте полезного действия.
Знать зависимости для определения мощности при поступательном и вращательном движениях, КПД.
Уметь рассчитать мощность с учетом потерь на трение и сил инерции.
Мощность
Для характеристики работоспособности и быстроты совершения работы введено понятие мощности.
Мощность — работа, выполненная в единицу времени:
Единицы измерения мощности: ватты, киловатты,
Мощность при поступательном движении (рис. 16.1)
Учитывая, что S/t = vcp, получим
где F — модуль силы, действующей на тело; vср — средняя скорость движения тела.
Средняя мощность при поступательном движении равна произведению модуля силы на среднюю скорость перемещения и на косинус угла между направлениями силы и скорости.
Мощность при вращении (рис. 16.2)
Тело движется по дуге радиуса r из точки М1 в точку M2
Работа силы:
где Мвр — вращающий момент.
Учитывая, что
получим
где ωcp — средняя угловая скорость.
Мощность силы при вращении равна произведению вращающего момента на среднюю угловую скорость.
Если при выполнении работы усилие машины и скорость движения меняются, можно определить мощность в любой момент времени, зная значения усилия и скорости в данный момент.
Коэффициент полезного действия
Каждая машина и механизм, совершая работу, тратит часть энергии на преодоление вредных сопротивлений. Таким образом, машина (механизм) кроме полезной работы совершает еще и дополнительную работу.
Отношение полезной работы к полной работе или полезной мощности ко всей затраченной мощности называется коэффициентом полезного действия (КПД):
Полезная работа (мощность) расходуется на движение с заданной скоростью и определяется по формулам:
Затраченная мощность больше полезной на величину мощности, идущей на преодоление трения в звеньях машины, на утечки и тому подобные потери.
Чем выше КПД, тем совершеннее машина.
Примеры решения задач
Пример 1. Определить потребную мощность мотора лебедки для подъема груза весом 3 кН на высоту 10 м за 2,5 с (рис. 16.3). КПД механизма лебедки 0,75.
Решение
1. Мощность мотора используется на подъем груза с заданной скоростью и преодоление вредных сопротивлений механизма лебедки.
Полезная мощность определяется по формуле
Р = Fv cos α.
В данном случае α = 0; груз движется поступательно.
2. Скорость подъема груза
3. Необходимое усилие равно весу груза (равномерный подъем).
6. Полезная мощность Р = 3000 • 4 = 12 000 Вт.
7. Полная мощность. затрачиваемая мотором,
Пример 2. Судно движется со скоростью 56 км/ч (рис. 16.4). Двигатель развивает мощность 1200 кВт. Определить силу сопротивления воды движению судна. КПД машины 0,4.
Решение
1. Определяем полезную мощность, используемую на движение с заданной скоростью:
2. По формуле для полезной мощности можно определить движущую силу судна с учетом условия α = 0. При равномерном движении движущая сила равна силе сопротивления воды:
Fдв = Fcопр.
3. Скорость движения судна v = 36 * 1000/3600 = 10 м/с
4. Сила сопротивления воды
Сила сопротивления воды движению судна
Fcопр. = 48 кН
Пример 3. Точильный камень прижимается к обрабатываемой детали с силой 1,5 кН (рис. 16.5). Какая мощность затрачивается на обработку детали, если коэффициент трения материала камня о деталь 0,28; деталь вращается со скоростью 100 об/мин, диаметр детали 60 мм.
Решение
1. Резание осуществляется за счет трения между точильным камнем и обрабатываемой деталью:
Пример 4. Для того чтобы поднять волоком по наклонной плоскости на высоту H = 10 м станину массой т == 500 кг, воспользовались электрической лебедкой (рис. 1.64). Вращающий момент на выходном барабане лебедки М = 250 Н-м. Барабан равномерно вращается с частотой п = 30 об/мин. Для подъема станины лебедка работала в течение t = 2 мин. Определить коэффициент полезного действия наклонной плоскости.
Решение
Как известно,
где Ап.с. — полезная работа; Адв — работа движущих сил.
В рассматриваемом примере полезная работа — работа силы тяжести
Вычислим работу движущих сил, т. е. работу вращающего момента на выходном валу лебедки:
Угол поворота барабана лебедки определяется по уравнению равномерного вращения:
где
Тогда
Подставив в выражение работы движущих сил числовые значения вращающего момента М и угла поворота φ, получим:
Коэффициент полезного действия наклонной плоскости составит
Контрольные вопросы и задания
1. Запишите формулы для расчета работы при поступательном и вращательном движениях.
2. Вагон массой 1000 кг перемещают по горизонтальному пути на 5 м, коэффициент трения 0,15. Определите работу силы тяжести.
3. Колодочным тормозом останавливают барабан после отключения двигателя (рис. 16.6). Определите работу торможения за 3 оборота, если сила прижатия колодок к барабану 1 кН, коэффициент трения 0,3.
4. Натяжение ветвей ременной передачи S1 = 700 Н, S2 = 300 Н (рис. 16.7). Определите вращающий момент передачи.
5. Запишите формулы для расчета мощности при поступательном и вращательном движениях.
6. Определите мощность, необходимую для подъема груза весом 0,5 кН на высоту 10 м за 1 мин.
7. Определите общий КПД механизма, если при мощности двигателя 12,5 кВт и общей силе сопротивления движению 2 кН скорость движения 5 м/с.
8. Ответьте на вопросы тестового задания.
Тема 1.14. Динамика. Работа и мощность
ЛЕКЦИЯ 17
Все формулы
Все формулы по физике и математике
Темы по физике
- Механика (56)
- Кинематика (19)
- Динамика и статика (32)
- Гидростатика (5)
- Молекулярная физика (25)
- Уравнение состояния (3)
- Термодинамика (15)
- Броуновское движение (6)
- Прочие формулы по молекулярной физике (1)
- Колебания и волны (22)
- Оптика (9)
- Геометрическая оптика (3)
- Физическая оптика (5)
- Волновая оптика (1)
- Электричество (39)
- Атомная физика (15)
- Ядерная физика (3)
Темы по математике
- Квадратный корень, рациональные переходы (1)
- Квадратный трехчлен (1)
- Координатный метод в стереометрии (1)
- Логарифмы (1)
- Логарифмы, рациональные переходы (1)
- Модуль (1)
- Модуль, рациональные переходы (1)
- Планиметрия (1)
- Прогрессии (1)
- Производная функции (1)
- Степени и корни (1)
- Стереометрия (1)
- Тригонометрия (1)
- Формулы сокращенного умножения (1)
Сообщение от администратора:
Ребята! Кто давно хотел выучить английский?
Переходите по моей ссылке и получите два бесплатных урока в школе английского языка SkyEng!
Занимаюсь там сам — очень круто. Прогресс налицо.
В приложении можно учить слова, тренировать аудирование и произношение.
Попробуйте. Два урока бесплатно по моей ссылке!
Жмите СЮДА
Мощность — выражается как отношению работы, выполняемой за некоторый промежуток времени, к промежутку времени
Из формулы следует, что в системе СИ единицей мощности является 1 Дж/с (джоуль в секунду). Эту единицу иначе называют ватт (Вт), 1 Вт= 1 Дж/с.
Мощность показывает, какая работа совершается за единицу времени
Если на движущееся тело действует сила, то эта сила совершает работу. Мощность в этом случае равна скалярному произведению вектора силы на вектор скорости, с которой движется тело:
Формула показывает связь между мощностью и скоростью при равномерном движении. Так же формула справедлива и для переменного движения, если под N понимать мгновенную мощность, а под V — мгновенную скорость). Если направление силы совпадает с направлением перемещения, то
и N=Fv.Тогда следует, что
Из этих формул видно, что при постоянной мощности двигателя скорость движения обратно пропорциональна силе тяги и наоборот. На этом основан принцип действия коробки скоростей (коробки перемены передач) различных транспортных средств.
В формуле мы использовали :
— Мощность
— Выполненная работа
— Время, за которое выполнялась работа
— Сила, приложенная к телу
— Скорость тела
— Угол между силой и скоростью
Тема 1.14. Работа и мощность. Коэффициент полезного действия.
Иметь представление о мощности при прямолинейном и криволинейном перемещениях, о мощности полезной и затраченной, о коэффициенте полезного действия.
Знать зависимости для определения мощности при поступательном и вращательном движениях, КПД.
Уметь рассчитать мощность с учетом потерь на трение и сил инерции.
Мощность
Для характеристики работоспособности и быстроты совершения работы введено понятие мощности.
Мощность — работа, выполненная в единицу времени:
Единицы измерения мощности: ватты, киловатты,
Мощность при поступательном движении (рис. 16.1)
Учитывая, что S/t = vcp, получим
где F — модуль силы, действующей на тело; vср — средняя скорость движения тела.
Средняя мощность при поступательном движении равна произведению модуля силы на среднюю скорость перемещения и на косинус угла между направлениями силы и скорости.
Мощность при вращении (рис. 16.2)
Тело движется по дуге радиуса r из точки М1 в точку M2
где Мвр — вращающий момент.
получим
где ωcp — средняя угловая скорость.
Мощность силы при вращении равна произведению вращающего момента на среднюю угловую скорость.
Если при выполнении работы усилие машины и скорость движения меняются, можно определить мощность в любой момент времени, зная значения усилия и скорости в данный момент.
Коэффициент полезного действия
Каждая машина и механизм, совершая работу, тратит часть энергии на преодоление вредных сопротивлений. Таким образом, машина (механизм) кроме полезной работы совершает еще и дополнительную работу.
Отношение полезной работы к полной работе или полезной мощности ко всей затраченной мощности называется коэффициентом полезного действия (КПД):
Полезная работа (мощность) расходуется на движение с заданной скоростью и определяется по формулам:
Затраченная мощность больше полезной на величину мощности, идущей на преодоление трения в звеньях машины, на утечки и тому подобные потери.
Чем выше КПД, тем совершеннее машина.
Примеры решения задач
Пример 1. Определить потребную мощность мотора лебедки для подъема груза весом 3 кН на высоту 10 м за 2,5 с (рис. 16.3). КПД механизма лебедки 0,75.
Решение
1. Мощность мотора используется на подъем груза с заданной скоростью и преодоление вредных сопротивлений механизма лебедки.
Полезная мощность определяется по формуле
Р = Fv cos α.
В данном случае α = 0; груз движется поступательно.
2. Скорость подъема груза
3. Необходимое усилие равно весу груза (равномерный подъем).
6. Полезная мощность Р = 3000 • 4 = 12 000 Вт.
7. Полная мощность. затрачиваемая мотором,
Пример 2. Судно движется со скоростью 56 км/ч (рис. 16.4). Двигатель развивает мощность 1200 кВт. Определить силу сопротивления воды движению судна. КПД машины 0,4.
Решение
1. Определяем полезную мощность, используемую на движение с заданной скоростью:
2. По формуле для полезной мощности можно определить движущую силу судна с учетом условия α = 0. При равномерном движении движущая сила равна силе сопротивления воды:
3. Скорость движения судна v = 36 * 1000/3600 = 10 м/с
4. Сила сопротивления воды
Сила сопротивления воды движению судна
Пример 3. Точильный камень прижимается к обрабатываемой детали с силой 1,5 кН (рис. 16.5). Какая мощность затрачивается на обработку детали, если коэффициент трения материала камня о деталь 0,28; деталь вращается со скоростью 100 об/мин, диаметр детали 60 мм.
Решение
1. Резание осуществляется за счет трения между точильным камнем и обрабатываемой деталью:
Пример 4. Для того чтобы поднять волоком по наклонной плоскости на высоту H = 10 м станину массой т == 500 кг, воспользовались электрической лебедкой (рис. 1.64). Вращающий момент на выходном барабане лебедки М = 250 Н-м. Барабан равномерно вращается с частотой п = 30 об/мин. Для подъема станины лебедка работала в течение t = 2 мин. Определить коэффициент полезного действия наклонной плоскости.
Решение
где Ап.с. — полезная работа; Адв — работа движущих сил.
В рассматриваемом примере полезная работа — работа силы тяжести
Вычислим работу движущих сил, т. е. работу вращающего момента на выходном валу лебедки:
Угол поворота барабана лебедки определяется по уравнению равномерного вращения:
Подставив в выражение работы движущих сил числовые значения вращающего момента М и угла поворота φ, получим:
Коэффициент полезного действия наклонной плоскости составит
Контрольные вопросы и задания
1. Запишите формулы для расчета работы при поступательном и вращательном движениях.
2. Вагон массой 1000 кг перемещают по горизонтальному пути на 5 м, коэффициент трения 0,15. Определите работу силы тяжести.
3. Колодочным тормозом останавливают барабан после отключения двигателя (рис. 16.6). Определите работу торможения за 3 оборота, если сила прижатия колодок к барабану 1 кН, коэффициент трения 0,3.
4. Натяжение ветвей ременной передачи S1 = 700 Н, S2 = 300 Н (рис. 16.7). Определите вращающий момент передачи.
5. Запишите формулы для расчета мощности при поступательном и вращательном движениях.
6. Определите мощность, необходимую для подъема груза весом 0,5 кН на высоту 10 м за 1 мин.
7. Определите общий КПД механизма, если при мощности двигателя 12,5 кВт и общей силе сопротивления движению 2 кН скорость движения 5 м/с.
Все формулы
Все формулы по физике и математике
Темы по физике
- Механика (56)
- Кинематика (19)
- Динамика и статика (32)
- Гидростатика (5)
- Молекулярная физика (25)
- Уравнение состояния (3)
- Термодинамика (15)
- Броуновское движение (6)
- Прочие формулы по молекулярной физике (1)
- Колебания и волны (22)
- Оптика (9)
- Геометрическая оптика (3)
- Физическая оптика (5)
- Волновая оптика (1)
- Электричество (39)
- Атомная физика (15)
- Ядерная физика (3)
Темы по математике
- Квадратный корень, рациональные переходы (1)
- Квадратный трехчлен (1)
- Координатный метод в стереометрии (1)
- Логарифмы (1)
- Логарифмы, рациональные переходы (1)
- Модуль (1)
- Модуль, рациональные переходы (1)
- Планиметрия (1)
- Прогрессии (1)
- Производная функции (1)
- Степени и корни (1)
- Стереометрия (1)
- Тригонометрия (1)
- Формулы сокращенного умножения (1)
Сообщение от администратора:
Ребята! Кто давно хотел выучить английский?
Переходите по моей ссылке и получите два бесплатных урока в школе английского языка SkyEng!
Занимаюсь там сам — очень круто. Прогресс налицо.
В приложении можно учить слова, тренировать аудирование и произношение.
Попробуйте. Два урока бесплатно по моей ссылке!
Жмите СЮДА
Мощность — выражается как отношению работы, выполняемой за некоторый промежуток времени, к промежутку времени
Из формулы следует, что в системе СИ единицей мощности является 1 Дж/с (джоуль в секунду). Эту единицу иначе называют ватт (Вт), 1 Вт= 1 Дж/с.
Мощность показывает, какая работа совершается за единицу времени
Если на движущееся тело действует сила, то эта сила совершает работу. Мощность в этом случае равна скалярному произведению вектора силы на вектор скорости, с которой движется тело:
Формула показывает связь между мощностью и скоростью при равномерном движении. Так же формула справедлива и для переменного движения, если под N понимать мгновенную мощность, а под V — мгновенную скорость). Если направление силы совпадает с направлением перемещения, то
и N=Fv.Тогда следует, что
Из этих формул видно, что при постоянной мощности двигателя скорость движения обратно пропорциональна силе тяги и наоборот. На этом основан принцип действия коробки скоростей (коробки перемены передач) различных транспортных средств.
В формуле мы использовали :
— Мощность
— Выполненная работа
— Время, за которое выполнялась работа
— Сила, приложенная к телу
— Скорость тела
— Угол между силой и скоростью
Скорость совершения работы характеризуется мощностью.
Различают среднюю и мгновенную мощность.
Средняя мощность определяется формулой
где A — работа, совершаемая за время ∆ t .
Для вычисления средней мощности также пользуются формулой
N = ( F → , 〈 v → 〉 ) = F → ⋅ 〈 v → 〉 = F 〈 v 〉 cos α ,
где F → — сила, совершающая работу; 〈 v → 〉 — средняя скорость перемещения; α — угол между векторами F → и 〈 v → 〉 .
В Международной системе единиц мощность измеряется в ваттах (1 Вт).
Мгновенная мощность определяется формулой
где A ′( t ) — производная от функции работы по времени.
Для вычисления мгновенной мощности также пользуются формулой
N = ( F → , v → ) = F → ⋅ v → = F v cos α ,
где F → — сила, совершающая работу; v → — мгновенная скорость перемещения; α — угол между векторами F → и v → .
Пример 20. Тело массой 60 г к моменту падения на Землю имеет скорость 5,0 м/с. Определить мощность силы тяжести в этот момент.
Решение. На рисунке показаны направления скорости тела и силы тяжести, действующей на тело.
В задаче задана мгновенная скорость тела; следовательно, мощность, которую необходимо рассчитать, также является мгновенной мощностью. Величина мгновенной мощности силы тяжести определяется формулой
где mg — модуль силы тяжести; m — масса тела; g — модуль ускорения свободного падения; v — модуль скорости тела; α = 0° — угол между векторами скорости и силы.
N = 60 ⋅ 10 − 3 ⋅ 10 ⋅ 5,0 ⋅ 1 = 3,0 Вт.
Пример 21. При скорости 36 км/ч мощность двигателя автомобиля равна 2,0 кВт. Считая, что сила сопротивления движению автомобиля со стороны воздуха и дороги пропорциональна квадрату скорости, определить мощность двигателя при скорости 72 км/ч.
Решение. Мощность двигателя автомобиля определяется силой тяги и скоростью:
N * = F тяги v cos α ,
где F тяги — величина силы тяги двигателя автомобиля; v — модуль скорости автомобиля при заданной мощности; α = 0° — угол между векторами силы тяги и скорости.
Силы, действующие на автомобиль, направление его скорости и выбранная система координат показаны на рисунке.
Для определения величины силы тяги запишем второй закон Ньютона с учетом того, что автомобиль движется с постоянной скоростью:
F → тяги + F → сопр + m g → + N → = 0 ,
или в проекциях на координатные оси —
O x : F тяги − F сопр = 0 ; O y : N − m g = 0, >
где F сопр — модуль силы сопротивления движению автомобиля; N — модуль силы нормальной реакции, действующей на автомобиль со стороны дороги; m — масса автомобиля; g — модуль ускорения свободного падения.
Из первого уравнения системы следует равенство модулей сил тяги и сопротивления:
По условию задачи сила сопротивления пропорциональна квадрату скорости автомобиля:
где k — коэффициент пропорциональности.
Подстановка данного выражения в формулу для силы тяги
а затем в формулу для вычисления мощности дает:
N * = k v 3 cos α .
Таким образом, мощность двигателя автомобиля определяется формулой:
N 1 * = k v 1 3 cos α ;
N 2 * = k v 2 3 cos α ,
где v 1 = 36 км/ч — первая скорость автомобиля; v 2 = 72 км/ч — вторая скорость автомобиля.
N 1 * N 2 * = k v 1 3 cos α k v 2 3 cos α = ( v 1 v 2 ) 3
позволяет вычислить искомую мощность автомобиля:
N 2 * = N 1 * ( v 2 v 1 ) 3 = 2,0 ⋅ 10 3 ⋅ ( 72 36 ) 3 = 16 ⋅ 10 3 Вт = 16 кВт.
Пример 22. Два автомобиля одновременно трогаются с места и движутся равноускоренно. Массы автомобилей одинаковы. Во сколько раз средняя мощность первого автомобиля больше средней мощности второго, если за одно и то же время первый автомобиль развивает скорость вдвое большую, чем второй? Сопротивлением движению пренебречь.
Решение. Мощность двигателей автомобилей определяется формулой:
N 1 * = F тяги 1 v 1 cos α ,
N 2 * = F тяги 2 v 2 cos α ,
где F тяги1 — величина силы тяги двигателя первого автомобиля; v 1 — модуль скорости первого автомобиля; F тяги2 — величина силы тяги двигателя второго автомобиля; v 2 — модуль скорости второго автомобиля; α = 0° — угол между векторами силы тяги и скорости.
Силы, действующие на первый и второй автомобиль, направление движения и выбранная система координат показаны на рисунке.
Для определения величины силы тяги запишем второй закон Ньютона с учетом того, что автомобили движутся равноускоренно:
F → тяги 1 + m 1 g → + N → 1 = m 1 a → 1 ,
или в проекциях на координатные оси —
O x : F тяги 1 = m 1 a 1 ; O y : N 1 − m 1 g = 0, >
F → тяги 2 + m 2 g → + N → 2 = m 2 a → 2 ,
или в проекциях на координатные оси —
O x : F тяги 2 = m 2 a 2 ; O y : N 2 − m 2 g = 0, >
где m 1 — масса первого автомобиля; m 2 — масса второго автомобиля; g — модуль ускорения свободного падения; N 1 — модуль силы нормальной реакции, действующей на первый автомобиль со стороны дороги; N 2 — модуль силы нормальной реакции, действующей на второй автомобиль со стороны дороги; a 1 — модуль ускорения первого автомобиля; a 2 — модуль ускорения второго автомобиля.
Из записанных уравнений следует, что величины сил тяги первого и второго автомобиля определяются формулами:
Отношение модулей сил тяги ( F тяги1/ F тяги2) определяется отношением
F тяги 1 F тяги 2 = m 1 a 1 m 2 a 2 .
Движение автомобилей происходит равноускоренно без начальной скорости, поэтому их скорость с течением времени изменяется по законам:
Отношение модулей скоростей ( v 1/ v 2) определяется отношением величин ускорений ( a 1/ a 2):
v 1 v 2 = a 1 a 2 ,
а отношение мощностей —
N 1 * N 2 * = F тяги 1 v 1 cos α F тяги 2 v 2 cos α = F тяги 1 F тяги 2 v 1 v 2 .
Подставим в полученное отношение выражения для ( F тяги1/ F тяги2) и ( v 1/ v 2):
N 1 * N 2 * = m 1 a 1 m 2 a 2 a 1 a 2 = m 1 m 2 ( a 1 a 2 ) 2 .
Преобразование формулы с учетом равенства масс автомобилей ( m 1 = m 2 = m ) и замены ( a 1/ a 2 = v 1/ v 2) дает искомое отношение мощностей:
N 1 * N 2 * = ( v 1 v 2 ) 2 = ( 2 v 2 v 2 ) 2 = 2 2 = 4 .
Таким образом, мощность первого автомобиля в 4 раза больше мощности второго автомобиля.