Показатели обогащения полезных ископаемых и их обогатимости

Классификация продуктов обогащения
В результате обогащения полезные ископаемые разделяются на несколько продуктов:
1. концентраты (один или несколько);
2. отходы;
3. промежуточные продукты (промпродукты).
Концентраты – продукты обогащения, в которых сосредоточено основное количество ценного компонента. Концентраты по сравнению с обогащаемым материалом характеризуются значительно более высоким содержанием полезных компонентов и более низким содержанием пустой (пустой) породы и вредных примесей.
Отходы – продукты обогащения, в которых сосредоточено основное количество пустой породы, вредных примесей и небольшое (остаточное) количество полезных компонентов.
Промежуточные продукты (промпродукта) – это механическая смесь сростков с раскрытыми зернами полезных компонентов и пустой породы. Промпродукты характеризуются низким по сравнению с концентратами и более высоким по сравнению с отходами содержанием полезных компонентов.
Качество полезных ископаемых и продуктов обогащения определяется содержанием ценного компонента, примесей, сопутствующих элементов, а также влажностью и крупности.
Результаты обогащения полезного ископаемого характеризуются качественно-количественным показателями, основные из них следующие:
§ выход продукта обогащения;
§ содержание компонента;
§ извлечение;
§ степень сокращения.
Выход продукта обогащения – показатель, что определяет, какую часть массы полезного ископаемого, что перерабатывается, составляет тот или иной продукт. Выход продукта обогащения определяется по формуле
, (1.1)
где Qпр и Q – масса полученного продукта и исходного питания, т.
Суммарный выход всех продуктов обогащения должен соответствовать выходу исходного обогащаемого полезного ископаемого, что принимается за 100%. Если при обогащении получают два конечных продукта – концентрат с выходом gк и отходы с выходом gотх, то это условие записывается таким уравнением, выражающим баланс выходов продуктов обогащения:
gк + gотх = 100% (1.2)
Содержание компонента – показатель, характеризующий долю компонента (полезного, вредного, нейтрального) в полезном ископаемом или в продукте обогащения. Содержание компонентов в полезном ископаемом a и в продуктах обогащения b выражают в процентах, иногда в долях единицы.
Содержание драгоценных металлов в рудах и продуктах обогащения обычно выражают как отношение массы металла к массе руды – г/т.
Суммарное количество любого компонента, содержащегося в конечных продуктах обогащения, должно соответствовать количеству этого компонента в исходном полезном ископаемом. Если при обогащении получены два конечных продукта – концентрат и отходы, то это условие запишется равенством:
gк х bк+ gотх х b отх = 100 х a (1.3)
Если при обогащении получены три конечных продукта – концентрат, отходы и промпродукт, то уравнение принимает вид:
gк х bк+ gотх х b отх + gпп х b пп = 100 х a (1.4)
Равенства (1.2), (1.3) и (1.4) называются уравнениями баланса продуктов обогащения.
Извлечение – это показатель, который определяет, какая часть массы ценного компонента, содержащегося в исходном сырье, перешла в концентрат или другой продукт обогащения. Извлечение выражается в процентах, реже в долях единицы:
εі = , % , (1.5)
где:
γпр – выход продукта от исходного питания, %;
β – содержание компонента в продукте, %;
α – содержание компонента в исходном питании, %.
При двух продуктах обогащения – концентрат и отходы – извлечение полезного компонента к концентрату (εк) и в отходы (εотх) записываем следующим образом:
Суммарное извлечение Sεі одного (данного) компонента во все конечные продукты обогащения составляет 100%, то есть: eк + eотх = 100%; eк + eотх + eпп = 100%;
Степень сокращения kc – величина, которая показывает во сколько раз выход полученного концентрата gк меньше количества переработанного полезного ископаемого:
kc = 100/gк (1.6)
Источник
Горнодобывающая промышленность никогда не обходится без такого метода обработки полезных ископаемых, как обогащение. Это процесс, при котором концентрация ценного сырья в добытой породе увеличивается, что повышает эффективность его использования. Например, железная руда представляет собой комплекс минералов, содержание железа в которых может колебаться от 10 до 60%.
Чтобы очистить сырье от примесей и прибегают к процессу обогащения, после которого эти цифры увеличиваются до 70-90%. Это первичная обработка твердых полезных ископаемых. Прежде чем приступить к нему, руду необходимо подготовить. В зависимости от вида сырья, его дробят, обжигают и промывают. Дальнейшее производство зависит от физико-химических свойств.
Основы обогащения полезных ископаемых
Исходя из минерального состава сырья, которое требует обогащения, существует большое количество способов его очищения. Принцип действия заключается в разделении ценной породы и пустой, благодаря чему концентрация полезного вещества в переработанном материале значительно повышается.
Есть несколько видов обогащения:
- электрическое,
- гравитационное,
- магнитное,
- радиологическое
- химическое.
Его выбор зависит от плотности материала, его магнитной или электрической восприимчивости, адсорбционной способности, химического состава, агрегатного состояния и кристалло-химической структуры. Также влияет и уровень взаимодействия пустой и ценной породы, насколько сильна их связь. Часто возникают случаи комбинирования этих методов, для повышения эффективности работы. Обогащение может проводиться в несколько этапов, когда в пустой породе остаются маленькие частички полезного ископаемого.
Первое промышленное применение обогащения сырья датируется 1700 годом, когда для добычи золота, оно размачивалось и фильтровалось. Но различные методы существовали в примитивном виде еще до нашей эры.
Гравитационное разделение
Основа обогащения полезных ископаемых этого типа лежит в распределении материалов по плотности, относительно среды, в которую помещается взвесь. Самым распространенным в горнодобывающей промышленности является применение гидравлического прибора. Пласт полезных ископаемых постепенно поддается воздействию турбулентного потока жидкости. В результате этого, минералы разрыхляются и разделяются в зависимости от плотности.
1 – бункер; 2 – питатель; 3 – грохот; 4 – конвейер; 5 – дробилка; 6 – конвейерные весы; 7 – отсадочные машины; 8, 9, 10 – спиральный, гидравлический, реечный классификаторы; 11 – гидроциклон; 12 – концентрационный стол; 13 – сгуститель; 14 – мельница; 15 – контактный чан; 16 – флотационная машина”> Pис. 1. Cхема обогащения оловянной руды c предварительной гидравлической классификацией: 1 – бункер; 2 – питатель; 3 – грохот; 4 – конвейер; 5 – дробилка; 6 – конвейерные весы; 7 – отсадочные машины; 8, 9, 10 – спиральный, гидравлический, реечный классификаторы; 11 – гидроциклон; 12 – концентрационный стол; 13 – сгуститель; 14 – мельница; 15 – контактный чан; 16 – флотационная машина.
Легкая фракция быстро поднимается на поверхность, а в дальнейшем собирается. Этот процесс не позволяет достигнуть высокой точности сепарации, поэтому сейчас частота его применения снизилась. Преимущество гравитационного обогащения в его себестоимости – она достаточно низкая. Но, из-за использования воды, он может стать причиной неблагоприятной экологической ситуации.
Гравитационное обогащение применяется почти для каждого вида переработки полезных ископаемых. Предварительно необходимо провести несколько подготовительных этапов. Например, дробление сырья в грохотах, благодаря чему можно отделить небольшое количество пустой породы. Применяется и вымачивание, опрыскивание, обжигание. Это значительно увеличивает его эффективность.
Тяжелые среды
Самым простым является обогащение в тяжелых средах, где нет потока жидкости, а разделение происходит под воздействием гравитации. Легкие частицы отделяются от тяжелых на несколько фракций. В качестве жидкостей может выступать раствор хлоридов кальция или цинка, органические смеси.
Концентрационные столы
Эталоном гравитационного разделения полезных ископаемых является обогащение на концентрационных столах. Первое упоминание об этом методе можно найти еще в трудах Геродота, который описывал древне-грецкие способы добычи золота. Установка представляет собой стол с выточенными горизонтальными желобами (рифлями), наклоненный под углом 1-10 градусов. Сверху подается напор суспензии, жидкости с дробленым полезным ископаемым. Под воздействием силы тяжести, частички оседают в желобах, а пустая порода остается в потоке. Недостаток этого способа в том, что для эффективного разделения сырья, руду необходимо раздробить до 0,1-13 мм. В противном случае большое количество пустой породы попадет в отсадку.
Сепарация на шлюзах
Для обогащения рассыпных руд (золота, вольфрама, олова и других редких металлов), используют сепарацию на шлюзах. Для разделения используется специальный материал с шероховатым покрытием – трафарет, в котором и задерживается ценное сырье. Жидкость может подаваться на ступенчатую и желобную ровную конструкцию, в зависимости от вида полезного ископаемого.
Интересно, что этот вид обогащения появился очень давно, и стал причиной появления легенды о золотом руно. В древности шкуры молодых овец смазывали жиром, и укладывали на дно желобов, куда подавалась суспензия золотоносного песка. Ценный металл задерживался в ворсинках, а жир не позволял ему двигаться вместе с потоком.
Винтовые сепараторы
Жидкость, в которую помещена взвесь полезного ископаемого, движется по вертикальной оси, по винтовому желобу. Здесь на породу воздействует две силы – гравитационная и центробежная. В результате этого процесса, тяжелые частицы перемещаются вдоль внутреннего борта желоба, а легкие по его внешней части. По завершению движения жидкости, они попадают в разные отсеки, и отправляются на дальнейшую переработку или утилизируются.
Центробежный концентратор
Этот способ является наиболее современным и эффективным на сегодня среди гравитационных. Его особенность в том, что он позволяет отделить минимальные частички полезного ископаемого от пустой породы. Благодаря воздействию центробежной силы, удается увеличить массу частиц, в результате чего и происходит сепарация. Для осуществления этого метода используется специальная установка – гидроциклон. В нем происходит вихревое вращение жидкости, благодаря чему образуется центробежная сила, заставляющая породу разделяться на фракции.
Воздушная сепарация (подвид гравитационной)
Это один из самых старых способов обогащения полезных ископаемых, но его не часто применяют в промышленных целях. Использование воздушной сепарации было разработано для районов, которые не обеспечены достаточным количеством водных ресурсов, из-за чего их использование не рентабельно. Одно из значительных преимуществ этого способа – минимальный вред окружающей среды.
Принцип действия воздушной сепарации в том, что струя воздуха, подающаяся под давлением, разрушает породу, высвобождая необходимое сырье. Это подходит для железных руд, где плотность пустого сырья значительно ниже, чем металла. Впервые его применили в Мексике, для обработки золотоносной руды, где воздушная сепарация показала хороший результат. Существенным недостатком этого метода является климатическая зависимость – влажность окружающей среды не должна превышать 5-6%.
Магнитное обогащение
Метод магнитного обогащения используется только для руд, которые имеют в составе магнитное сырье (железных, марганцевых, медно-никелевых руд и руд редких металлов). Его проводят в мокрой и сухой среде, в зависимости от плотности и гидрофильности пустой породы. Иногда в качестве первичной обработки сырья используется обжиг – он повышает его магнитные свойства.
Преимущество этого метода в низкой себестоимости. Устройства для сепарации долговечны, не требуют постоянного обслуживания и автоматизированы. К тому же он не оказывает негативного влияния на экологию местности. Учитывая постоянное развитие технологий, эффективность магнитной сепарации значительно увеличивается.
Руды, подлежащие магнитному обогащению:
1. Сильномагнитные:
1.1. магнетит,
1.2. франклит,
1.3. пиротин,
1.4. мартит
2. Магнитные:
2.1. ильменит,
2.2. гематит,
2.3. хромит
3. Слабомагнитные:
3.1. глауконит,
3.2. доломит,
3.3. пирит.
4. Не магнитные:
4.1. нерудные ископаемые.
Обогащение проводится в магнитном сепараторе, где разделяется смесь минералов и металлических включений. Он может быть роторным, барабанным и валковым, но принцип разделения остается одинаковым. При движении магнитной головки, восприимчивый материал движется по направлению к полю, а пустая порода не меняет своей траектории. Существуют приспособления, которые скомбинированы с грохотами, для вибрационного дробления материала.
Магнитная сепарация впервые была изобретена еще в 1792 году, но ее промышленное использование началось только в 19 веке.
Электрическое обогащение
Одним из самых новых и эффективных методов является электрическая сепарация сырья. Но он подходит только для полезных ископаемых, которые восприимчивые к воздействию тока.
Способы электрической сепарации материала:
- Электрическая.
- Электростатическая.
- Диэлектрическая.
- Трибоэлектрическая.
- Трибоадгезионная.
Основа этого метода – существенные различия в их электрической природе. Прежде, чем приступить к процессу обогащения, необходимо зарядить восприимчивый материал. Благодаря этому, его можно будет отделить от пустой породы. Изменения электрического поля можно достигнуть несколькими путями – индукция, касание, воздействие газовыми ионами.
Принцип разделения основывается на том, что поведение проводника и диэлектрика разное. При контакте одноименных зарядов, они отталкиваются, а непроводник остается неподвижным. Если заряды разные, то они притягиваются. Из-за этого, порода с большим количеством полезного сырья отделяется от пустой. Электрическая сепарация – один из самых эффективных процессов обогащения полезных ископаемых, без применения химических реагентов.
Флотационное обогащение
Чаще всего этот способ применяется в обогащении медной руды. В основе принципа действия этого метода лежит разделение жидкости на фракции, при котором гидрофобные частицы удерживаются на поверхности легкого слоя, и поднимаются на поверхность с пеной или реагентом.
Существует 2 типа флотационных методов обогащения:
- Жидкость-жидкость (масляная, пленочная).
- Жидкость-газ (пенная).
В промышленных масштабах чаще используется пенная флотация. Жидкость состоит из реагентов, которые увеличивают адгезивные свойства полезного ископаемого. При вспенивании суспензии, частицы металла, например, меди, прикрепляются к пузырькам воздуха, и всплывают на поверхность. Пустая порода оседает на дно, а пена собирается и отправляется в дальнейшее производство.
Пленочная и масляная сепарация появилась намного раньше. В качестве реагента, к которому прикреплялось полезное ископаемое, использовались перья смазанные жиром или смола. При всплывании на поверхность, они задерживали в себе частички гидрофобных материалов. Но, в сравнении с ним, пенная сепарация несколько эффективнее и дешевле.
Радиометрическая сепарация
Этот метод является одним из самых дорогих, используется для руд с низким содержанием полезного сырья. Например, он высокоэффективен в поиске драгоценных камней, концентрация которых в породе может достигать 0,1%. Основа обогащения полезных ископаемых этим методом – способность минералов к излучению или восприимчивость к облучению Он чувствителен для частичек 2-300 мм. Принцип действия построен на восприимчивости ископаемого к излучению. Во время облечения, камни начинают источать свечение. Специальный прибор регистрирует его и подает поток воздуха, в результате чего, частица выбрасывается в приемник.
Химическая сепарация
При обработке урановых, вольфрамовых, медных, медно-никелевых руд активно используется и метод химического обогащения. Также для обезжелезивания каолинов, кварца и полевого шпата. Ископаемое помещают в специальный реагент, который растворяет пустую породу, не меняя состав полезного сырья. Благодаря этому методу можно получить высокую эффективность обогащения, но его себестоимость достаточно высока. Поэтому его используют в случаях, когда концентрация материала в руде достаточно низкая, из-за чего другие методы сепарации будут не результативны.
Одним из самых новых является химико-биологическое обогащение. В основе лежит принцип выщелачивания, разрушения кристаллических решеток пустой породы бактериями, например, Thiobacillus ferroxidans, Ferrobacillus tiooxidans. Также продукты жизнедеятельности этих бактерий являются сильными окислителями, благодаря чему разрешение пустой породы происходит намного быстрее. В результате этого процесса можно перерабатывать руды с низким содержанием полезного ископаемого.
Обогатительные фабрики
Обогащение полезных ископаемых – это способ увеличения концентрации ценного сырья, и отделения его от пустой породы. Оно необходимо для получения чистых металлов, угля, драгоценных камней. Каждое горнодобывающее предприятие не может обойтись без обогатительной фабрики, где и происходит процесс сепарации. Они могут, как располагать на месте добычи полезных ископаемых, так и при заводах, которые перерабатывают уже готовое сырье.
Современные обогатительные фабрики являются полностью автоматизированными, а речное вмешательство сведено до минимума. На них в сутки может быть переработано до 100 тысяч тонн руды. Очень часто методы обогащения полезных ископаемых комбинируются, как, например, химический и флотацинный.
Источник
Технологические результаты обогащения того или иного полезного ископаемого нельзя оценить при помощи одного какого-либо показателя. Необходимо учитывать несколько основных показателей, характеризующих процесс обогащения в целом. К основным показателям относят: содержание компонента в исходном сырье и продуктах обогащения; выход продуктов обогащения; извлечение компонентов в продукты обогащения.
Содержанием компонента называется отношение массы компонента к массе продукта, в котором он находится. Содержание компонентов обычно определяется химическими анализами и выражается в процентах, долях единицы или для драгоценных металлов в граммах на тонну (г/т). Содержание компонентов принято обозначать греческими буквами: α — содержание в исходной руде; β — содержание в концентрате, промпродукте или отходах (βк, βпп, βотх) соответственно.
Выходом продукта обогащения называется отношение массы полученного продукта к массе переработанного исходного сырья. Выход выражается в процентах или долях единицы и обозначается греческой буквой γ.
Извлечением компонента в продукт обогащения называется отношение массы компонента в продукте к массе того же компонента в исходном полезном ископаемом. Извлечение выражается обычно в процентах или долях единицы и обозначается греческой буквой ε. Извлечение полезного компонента в концентрат характеризует полноту его перехода в этот продукт в процессе обогащения.
Все технологические показатели обогащения взаимосвязаны. Поэтому, зная значения одних, можно расчетным путем получить значения других. Если нам известно содержание полезного компонента в исходном сырье и продуктах обогащения, то можно подсчитать выходы продуктов обогащения, извлечение полезного компонента в концентрат и т.д.
Если обозначим массу исходного сырья Qисх, массу полученных продуктов обогащения концентрата Qк и отходов Qотх, то выход концентрата γк (%) и отходов γотх (%) можно определить по формулам:
γк = 100 Qк / Qисх; γотх = 100 Qотх / Qисх.
Так как сумма выходов конечных продуктов обогащения равна выходу исходного сырья, принимаемому обычно за 100%, можно составить баланс переработанного материала (для концентрата и отходов):
Qисх = Qк + Qотх, или γисх = γк + γотх.
Зная, что γисх = 100% запишем γк + γотх = 100. Суммарная масса ценного компонента в продуктах обогащения должна соответствовать массе его в исходном сырье. Это условие принято называть балансом ценного компонента:
100α = γкβк + γотхβотх, для угля 100А = γкА + γотхА ,
где извлечение полезного компонента в концентрат εк (%) определяется по формуле
εк = γкβк / α, для угля εк = γк (100 – А )/(100 – А ).
Грохочение
Общие сведения
Процесс разделения исходного материала на два или несколько классов имеет общее название — классификация по крупности. Такое разделение может осуществляться двумя основными способами: грохочением и классификацией в водной или воздушной среде.
Грохочением называется процесс разделения кусковых и зернистых материалов на продукты различной крупности, называемые классами, с помощью просеивающих поверхностей с калиброванными отверстиями (колосниковыми решетками, листовыми и проволочными решетами и другими).
В результате грохочения исходный материал разделяется на надрешетный (верхний) продукт, зерна (куски) которого больше размера отверстий просеивающей поверхности, и подрешетный (нижний) продукт, зерна (куски) которого меньше размеров отверстия просеивающей поверхности. Надрешетный продукт называют классом +d (крупнее d), а подрешетный продукт –d (мельче d), где d — размер отверстия сита. При последовательном просеивании материала на n ситах получается n+1 классов крупности от +d1; –d1 +d2; –d2 +d3; и так далее до –dn. Последовательный ряд абсолютных размеров сит, применяемых при грохочении, называется шкалой сит или шкалой грохочения. Постоянное отношение размера отверстий предыдущего сита к размеру отверстий последующего называется модулем шкалы сит. Чаще всего применяются шкалы сит с модулем 2 (100; 50; 25; 13 мм и так далее) и , в основании которой принято сито с отверстием размером 0,074 мм.
Грохочение производится на грохотах. Грохот имеет одну или несколько просеивающих поверхностей, установленных в одном или нескольких коробах.
Подготовительное грохочение применяется для разделения материала на несколько классов, предназначенных для последующей раздельной обработки.
Вспомогательное грохочение применяется при дроблении для выделения готового класса из продукта перед его дроблением (предварительным грохочением), для контроля крупности дробленого продукта (поверочное, или контрольное грохочение) и совмещенное, когда обе операции объединяются в одну.
Самостоятельное грохочение применяется для разделения на классы, представляющие собой готовые продукты (такому разделению — сортировке — подвергают железные руды, угли, строительные материалы и так далее).
Избирательное грохочение применяется для обогащения полезных ископаемых при различии в твердости, крепости или форме кусков ценного компонента и пустой породы, в результате чего получаются продукты, различающиеся не только по крупности, но и по содержанию в них ценного компонента.
Обезвоживающее грохочение применяется для удаления основной массы воды или пульпы от зернистых материалов и отделения суспензии от продуктов сепарации в тяжелой среде.
В зависимости от крупности наибольших кусков в исходном питании грохотов и размеров отверстий просеивающих поверхностей различают крупное (максимальный кусок до 1200 мм, размер отверстий от 300 до 100 мм), среднее (максимальный кусок до 350 мм, размер отверстий от 60 до 25 мм), мелкое (максимальный кусок до 75 мм, размер отверстий от 25 до 6 мм) и особо тонкое (размер отверстий до 0,045 мм) грохочение.
Гранулометрический состав
Обрабатываемое на обогатительной фабрике минеральное сырье (руда, горная масса) и получаемые из него продукты обогащения представляют собой смесь зерен неправильной формы различного размера. Распределение зерен по классам крупности характеризует гранулометрический состав исходного сырья и продуктов обогащения.
Для определения гранулометрического состава используют следующие способы:
• измерение крупных кусков по трем взаимно перпендикулярным направлениям;
• ситовый анализ — рассев на наборе сит на классы различной крупности;
• седиментационный анализ — разделение материала по скорости падения частиц различной крупности в водной среде для материала крупностью от 40 (50) до 5 мкм (для более мелких частиц применяют седиментацию в центробежном поле);
Таблица 7.1. — Результаты ситового анализа | |||
Класс, мм | Выход | ||
Частный | Суммарный, % | ||
кг | % | «по плюсу» | «по минусу» |
13—25 | |||
6—13 | 11,2 | ||
3—6 | 12,8 | ||
1—3 | 14,4 | 5S | |
0,5—1 | |||
0—0,5 | 17,6 |
• микроскопический анализ — измерение частиц под микроскопом и классификация их на группы в узких границах определенных размеров (для материалов крупностью от 50 мкм до десятых долей микрометра).
Ситовый анализ заключается в рассеве пробы материала на нескольких ситах с различными стандартными размерами отверстий заданного модуля. После рассева пробы каждый класс крупности взвешивается на технических весах. Выход каждого класса определяется делением массы класса на общую массу пробы.
Для тонкоизмельченного материала применяют мокрое просеивание. Результаты ситового анализа приводятся обычно в виде таблиц или графиков. Для примера в табл. 7.1 приведены результаты ситового анализа пробы полезного ископаемого. По данным ситового анализа строятся в прямоугольной системе координат характеристики крупности (рис. 7.2).
Суммарные выходы «по плюсу» (+) или «по минусу» (–) представляют собой сумму выходов всех классов соответственно крупнее или мельче отверстий данного сита. По данным ситовых анализов (на оси ординат откладывают суммарный выход классов (в процентах), на оси абсцисс — размеры отверстии сит в миллиметрах. На основании суммарных выходов материала крупнее диаметра отверстий сита строится кривая «по плюсу» (1), мельче — «по минусу» (2), Сумма выходов по обеим кривым должна всегда равняться 100 %. Поэтому обе кривые характеристик «по плюсу» и «по минусу» являются зеркальным отражением одна другой. Они всегда пересекаются в точке, соответствующей суммарному выходу 50%. Точка пересечения кривой с осью абсцисс показывает максимальный размер куска в данной пробе. По суммарной характеристике крупности можно определить выход любого класса. Для этого находят на оси абсцисс размер нужного класса. И из этой точки перпендикулярно к оси проводят прямую до пересечения с кривой, откуда проводят параллельную оси абсцисс прямую до ее пересечения с осью ординат. Точка пересечения определяет суммарный выход искомого класса.
Конструкции грохотов
В практике грохочения полезных ископаемых в настоящее время применяют в основном грохоты следующих конструкций: неподвижные — колосниковые, прямоугольные, конические и дуговые; подвижные — механические (барабанные и вибрационные, инерционные и самобалансные). В практике обогащения наибольшее распространение получили вибрационные грохоты, так как они имеют высокую производительность и эффективность грохочения.
Неподвижные грохоты. Представляют собой наклонные решета, собранные из колосников, образующих между собой продольные щели. Размер между колосниками составляет не менее 50 мм, угол наклона при грохочении руд 40–50°; углей — 30–35°. Во время движения более мелкий материал проваливается через щели между колосниками, а надрешетный продукт разгружается в конце решета. Эффективность грохочения неподвижных колосниковых грохотов низкая и обычно изменяется в пределах 50–60%. Применяют их чаще для крупного и реже для среднего грохочения, когда допустима пониженная эффективность грохочения.
Подвижные (механические) грохоты. На углеобогатительных фабриках получили распространение цилиндрические барабанные грохоты (ГЦЛ) с просеивающей поверхностью, выполненной в виде многозаходной спирали, расстояние между витками которой определяет размер кусков подрешетного продукта. Грохоты ГЦЛ применяют в операциях предварительного грохочения при размерах щели спиралей от 50 до 200 мм. К вибрационным грохотам с прямолинейными колебаниями (вибрациями) относят самобалансные грохоты ГСЛ, ГСС и ГСТ или ГИСЛ, ГИСС и ГИСТ (рис. 7.3).
Отличительная их особенность — простота установки и универсальность. ГС — грохот самобалансный, ГИС — грохот инерционный самобалансный, Л, С, Т — соответственно легкого, среднего и тяжелого типов.
Грохот имеет горизонтальный или наклонный короб 1 с одним (или несколькими) ситом 5, подвешенный или установленный на амортизаторах (пружинах) 2. Колебания коробу придает самобалансный вибровозбудитель 4, закрепленный на коробе. Самобалансный вибровозбудитель состоит из корпуса, в котором на двух параллельных валах размещены два цилиндрических зубчатых колеса с равным числом зубьев и одинаковым дебалансом. Благодаря этому валы вращаются с одинаковой частотой в противоположном направлении. Материал, находящийся на сите грохота, энергично подбрасывается и просеивается. Грохоты выпускаются с площадью сит от 7,5 до 21 м2, просеивают материал крупностью до 600 мм. Эффективность грохочения достигает 80–90 %. Самобалансные грохоты легкого типа применяют для грохочения углей, антрацитов и горючих сланцев, обезвоживания продуктов обогащения и т.д. Самобалансные грохоты тяжелого типа с несколькими вибровозбудителями применяют для грохочения руд и горячего агломерата.
Дата добавления: 2016-10-30; просмотров: 2112 | Нарушение авторских прав | Изречения для студентов
Читайте также:
Рекомендуемый контект:
Поиск на сайте:
© 2015-2020 lektsii.org – Контакты – Последнее добавление
Источник