Обогащение полезных ископаемых гравитационные методы обогащения
Гравитационными методами обогащения называют такие, в которых разделение минеральных частиц, отличающихся плотностью, размером и формой, обусловлено различием в характере и скорости их движения в текучих средах под действием силы тяжести и сил сопротивления. Гравитационные методы занимают ведущее место среди других методов обогащения. Они могут быть собственно гравитационными (разделение в поле силы тяжести – обычно для относительно крупных частиц) и центробежными (разделение в центробежном поле – для мелких частиц). Если разделение происходит в воздушной среде, то процессы называют пневматическими; в остальных случаях – гидравлическими. Наибольшее распространение в обогащении получили собственно гравитационные процессы, осуществляемые в воде.
По типу используемых аппаратов гравитационные процессы можно разделить на отсадку, обогащение в тяжелых средах и обогащение на наклонной плоскости в потоке воды: концентрацию на столах, обогащение на шлюзах, в желобах, винтовых сепараторах. применяют также относительно новые гравитационные процессы – обогащение в вибрационных концентраторах, противоточных сепараторах, обогатительных циклонах с водной средой и др.
Рис.I.12. Принцип действия отсадки
1 и 2 – соответственно тяжелая и легкая
фракции; 3 – исходное питание; 4 –
подрешетная вода
Наиболее распространенным методом гравитационного обогащения является отсадка. Отсадкой называется процесс разделения минеральных частиц по плотности в водной или воздушной среде, пульсирующей относительно разделяемой смеси в вертикальном направлении.
Этим методом можно обогащать материалы крупностью от 0,1 до 400 мм. Отсадка применяется при обогащении углей, сланцев, окисленных железных, марганцевых, хромитовых, касситеритовых, вольфрамитовых и других руд, а также золотосодержащих пород. В процессе отсадки (рис.I.12) материал, помещенный на решете отсадочной машины, периодически разрыхляется и уплотняется. При этом зерна обогащаемого материала под влиянием сил, действующих в пульсирующем потоке, перераспределяются таким образом, что в нижней части постели сосредотачиваются частицы максимальной плотности, а в верхней – минимальной (размеры и форма частиц также оказывают влияние на процесс расслоения). Часто на решето укладывают искусственную постель из материала, плотность которого больше плотности легкого минерала, но меньше плотности тяжелого. крупность постели в 5-6 раз больше крупности максимального куска исходной руды. В настоящее время известно около 100 конструкций отсадочных машин. Наиболее распространена гидравлическая отсадка. А среди машин чаще всего применяют беспоршневые.
Обогащениеполезных ископаемыхв тяжелых средахосновано на разделении минеральной смеси по плотности. Процесс происходит в соответствии с законом Архимеда в средах с плот-
4 5 6
2 7
10 9
Рис. I.13. Тяжелосредный колесный сепаратор
1 – корпус с ванной; 2 – подача суспензии; 3 – исходный материал; 4 – привод элеваторного колеса; 5 – гребковое устройство; 6 – элеваторное колесо; 7 – легкий продукт; 8 тяжелый продукт; 9,10 – сброс суспензии
Ностью, промежуточной между плотностью удельно-легкого и удельно-тяжелого минерала. Удельно-легкие минералы всплывают, а удельно-тяжелые погружаются на дно аппарата. Обогащение в тяжелых средах широко применяют в качестве основного процесса для углей трудной и средней категорий обогатимости, а также сланцев, хромитовых, марганцевых, сульфидных руд цветных металлов и др. Эффективность разделения в тяжелых средах выше эффективности обогащения на отсадочных машинах (это самый эффективный гравитационный процесс).
В качестве промышленной тяжелой среды используют тяжелые суспензии, т.е. взвесь мелких удельно-тяжелых частиц (утяжелителя) в среде, которой обычно является вода. Гидравлические суспензии называют просто суспензиями. Наиболее часто утяжелителями являются магнетит, галенит и ферросилиций. Тяжелосредные гравитационные сепараторы можно разделить на три основных типа – конусные, колесные и барабанные. Колесные сепараторы (рис.I.13) применяют для обогащения материала крупностью 400-6 мм. Чаще всего используют СКВ – сепаратор колесный с вертикальным элеваторным колесом.
Технологические схемы обогащения в тяжелых суспензиях практически одинаковы для большинства работающих установок. Процесс состоит из следующих операций: подготовка тяжелой суспензии, подготовка руды к разделению, разделение руды в суспензии на фракции различной плотности, дренаж рабочей суспензии и отмывка продуктов разделения, регенерация утяжелителя.
Обогащение в потоках, текущих по наклонным поверхностям, производится на концентрационных столах, шлюзах, в желобах и винтовых сепараторах. Движение пульпы в этих аппаратах происходит по наклонной поверхности под действием силы тяжести при малой (по сравнению с шириной и длиной) толщине потока. Обычно она превышает размер максимального зерна в 2-6 раз.
Концентрация (обогащение) на столах – это процесс разделения по плотности в тонком слое воды, текущей по слабонаклонной плоскости (деке), совершающей асимметричные возвратно-поступательные движения в горизонтальной плоскости перпендикулярно направлению движения воды. Концентрацию на столе применяют при обогащении мелких классов – 3+0,01 мм для руд и –6(12)+0,5 мм для углей. Данный процесс используется при обогащении руд олова, вольфрама, редких, благородных и черных металлов и др.; для обогащения мелких классов углей, в основном для их обессеривания. Концентрационный стол (рис.I.14) состоит из деки (плоскости) с узкими рейками (рифлями); опорного устройства; приводного механизма. Угол наклона деки a = 4¸10°. Для легких частиц преобладающими являются гидродинамическая и подъемная турбулентная силы, поэтому легкие частицы смывает в перпендикулярном к деке направлении. Частицы промежуточной плотности попадают между тяжелыми и легкими частицами.
Шлюз представляет собой наклонный желоб прямоугольного сечения с параллельными бортами, на дно которого укладывают улавливающие покрытия (жесткие трафареты или мягкие коврики), предназначенные для удержания осевших частиц тяжелых минералов. Шлюзы применяют для обогащения золота, пла-е
тины, касситерита из россыпей и других материалов, обогащаемые компоненты которых значительно различаются по плотности. Шлюзы характеризуются высокой степенью концентрации. Материал на шлюз подают непрерывно до тех пор, пока ячейки трафаретов не заполнятся преимущественно частицами плотных минералов. После этого загрузку материала прекращают и производят сполоск шлюза.
Рис. I.14. Концентрационный стол
1 – сборник легкой фракции, 2 – дека, 3 – смывная вода, 4 – исходное питание 5 – привод, 6 – нарифления, 7 – сборник тяжелой фракции
Струйный желоб имеет плоское днище и сходящиеся под некоторым углом борта. Пульпа загружается на широкий верхний конец желоба. У конца желоба в нижних слоях располагаются частицы большей плотности, а в верхних слоях – меньшей. В конце желоба материал специальными рассекателями разделяется на концентрат, промпродукт и хвосты. Суживающиеся желоба применяют при обогащении россыпных руд. Аппараты типа суживающихся желобов делят на две группы: 1) аппараты, состоящие из набора отдельных желобов в различных компоновочных вариантах; 2) конусные сепараторы, состоящие из одного или нескольких конусов, каждый из которых представляет собой как бы набор радиально установленных суживающихся желобов с общим днищем.
Рис. I.15. Винтовой сепаратор
1– винтовой желоб; 2 – устройство для подачи смывной воды; 3 – пульподелитель; 4 – станина
У винтовых сепараторов неподвижный наклонный гладкий желоб выполнен в виде спирали с вертикальной осью (рис.I.15), их используют для разделения материала крупностью от 0,1 до 3 мм. При движении в закрученном потоке помимо обычных гравитационных и гидродинамических сил, действующих на зерна, развиваются центробежные силы. Тяжелые минералы концентрируются у внутреннего борта желоба, а легкие – у внешнего. Затем продукты разделения разгружают из сепаратора при помощи либо рассекателей, стоящих в конце желоба, либо отверстий, расположенных по ходу желоба.
ФЛОТАЦИОННЫЕМЕТОДЫ ОБОГАЩЕНИЯ
Флотацию применяют для обогащения большинства руд цветных металлов, апатитовых, фосфоритовых, графитовых, флюоритовых и других руд, широко используют в сочетании с другими методами при обогащении руд черных металлов, угля. Широкая распространенность флотации объясняется универсальностью процесса, связанной с возможностью разделения практически любых минералов, обогащения бедных руд с весьма тонкой вкрапленностью полезных минералов.
Флотация основана на различном закреплении частиц разделяемых минералов на межфазной границе, что определяется различием в поверхностных свойствах минералов. При пенной флотации, наиболее применяемой в промышленности, пульпу насыщают газом и частицы некоторых минералов прилипают к пузырькам газа и всплывают на поверхность, образуя минерализованную пену, которая легко удаляется механическим путем. Другие минералы не прилипают и остаются в объеме пульпы.
По способу насыщения пульпы газом различают несколько видов пенной флотации, однако наибольшее распространение получило насыщение пульпы воздухом.
Способность частицы минерала прикрепляться к пузырьку воздуха хорошо объясняется с позиции смачивания. Минералы, поверхность которых легко смачивается водой, называются гидрофильными (кальцит, кварц), а минералы, плохо смачиваемые водой, – гидрофобными (сера, графит, тальк, молибденит). Гидрофобность поверхности минералов оценивается различными методами. Наиболее распространенным методом оценки является определение краевого угла смачивания (q), измеряемого от 0 до 180°. Краевым углом смачивания называется угол между касательной к поверхности воздушного пузырька (или к поверхности капли воды в любой точке трехфазного периметра смачивания) и поверхностью минерала. Его принято отсчитывать в сторону жидкой фазы. Капля жидкости, нанесенная на поверхность твердого (минерала), будет растекаться до тех пор, пока не наступит равновесие между силами поверхностного натяжения на границе твердое – газ sт-г, жидкость – газ sж-г и твердое – жидкость sт-ж. Исходя из этого равенства, легко найти косинус краевого угла смачивания:
.
При полной гидрофильности, когда капля полностью растекается по поверхности твердого, краевой угол стремится к нулю, а косинус – к единице. При полной гидрофобности краевой угол стремится к 180°, а косинус к – единице.
Чем хуже смачивается минерал, тем лучше он прикрепляется к пузырьку воздуха, легче флотируется. Почти все природные минералы хорошо смачиваются водой (краевой угол смачивания у них меньше 50°). Исключением являются некоторые естественно-гидрофобные минералы (сера, графит, уголь, тальк и молибденит), у которых краевой угол составляет около 90°.
Для регулирования смачиваемости разделяемых минералов (соответственно результатов флотации) применяют различные флотореагенты. Их подразделяют на собиратели, вспениватели, депрессоры, активаторы и регуляторы среды.
Задача собирателей – повысить гидрофобность извлекаемого минерала. Собиратели – это органические вещества, содержащие в своей молекуле углеводородную цепочку. В зависимости от строения молекулы собиратели бывают аполярными и гетерополярными.
Молекулы аполярных собирателей (керосин, смазочные масла) содержат только углеводородную цепочку. Их широко применяют при флотации естественно-гидрофобных минералов (уголь, сера и др.)
Молекулы гетерополярных собирателей имеют сложную асимметричную структуру, состоящую из двух частей, отличных по своим физико-химическим свойствам: углеводородной цепочки и активной группы (-COOH, -SH и др.). Такие молекулы в воде диссоциируют, и в зависимости от того, в каком ионе оказывается цепочка, гетерополярные собиратели бывают анионо- или катионоактивными. Наиболее распространенным анионоактивным собирателем являются ксантогенаты – жирные соли дитиоугольной кислоты. Ксантогенаты являются основным собирателем при флотации сульфидных руд цветных металлов.
Из катионоактивных собирателей наибольшее практическое значение получили первичные алифатические амины RNH2 и четвертичные аммониевые основания, например лауриламин солянокислый (C12H25NH3Cl), который широко применяют при флотации солей и полевого шпата.
Назначение вспенивателей – способствовать созданию устойчивой минерализованной пены. В качестве вспенивателей используют органические соединения, в основном, из класса спиртов. Одним из распространенных вспенивателей является сосновое масло, которое применяют на многих обогатительных фабриках.
Назначение депрессоров – повысить гидрофильность неизвлекаемого минерала. В качестве депрессоров применяют различные минеральные соли, кислоты и основания. Например, цианистые соли (NaCN) используют для подавления флотации медных минералов.
Задача активаторов – усилить действие собирателя на извлекаемый минерал. В качестве активаторов применяют различные минеральные соли, кислоты и основания. Например, сульфид натрия (Na2S) широко используется для улучшения флотации окисленных минералов.
Назначение регуляторов среды – поддерживать рН пульпы в требуемых пределах. Если необходимо сдвигать рН в кислую область (< 7), то чаще используют серную кислоту; если в щелочную (> 7), то щелочи (CaO, Na2CO3, NaOH).
Подбирая соответствующие реагенты, их комбинацию и количества, добиваются оптимальных показателей флотационного обогащения.
Флотационными машинами называют аппараты, в которых осуществляют флотацию. Широкое применение флотации для обогащения самых разнообразных полезных ископаемых привело к созданию большого числа типов и конструкций флотационных машин.
Классификацию флотационных машин чаще всего производят в зависимости от способа аэрации и перемешивания пульпы. По этому признаку машины разделяют на механические, пневматические и пневмомеханические.
Механическая флотационная машина (рис.I.16, а) состоит из последовательного ряда камер 1. В центральной части каждой камеры внутри трубы 4 размещен вращающийся вал 2 с импеллером 3. При вращении импеллера проходящая через него пульпа эжектирует (засасывает) атмосферный воздух и выбрасывает его в камеру, заполненную пульпой. Образование воздушных пузырьков и аэрация пульпы происходят в результате турбулизации пульповоздушной смеси, поступающей из импеллера в камеру. Пенный продукт (обычно концентрат) с помощью гребкового устройства 5 направляется на обезвоживание (или перечистку). Камерный продукт самотеком поступает в следующую камеру или выдается в качестве хвостов (из последней камеры машины). Пневмомеханическая флотационная машина (рис.I.16, б) отличается от механической тем, что в ней на валу 1 установлена мешалка (аэратор) 2, назначение которой – перемешивать пульпу и подаваемый от воздуходувки под давлением воздух.
Рис.I.16. Схемы механической (а) и пневмомеханической (б)
флотационных машин
Пневматическая (аэрлифтная) флотомашина конструктивно является наиболее простой. Она представляет собой емкость, вытянутую вверх, прямоугольного или круглого сечения, с коническим днищем, внутри которой расположена аэрлифтная труба. В трубу под давлением подается сжатый воздух, который интенсивно перемешивает пульпу и насыщает ее пузырьками. Образующаяся на поверхности пена самотеком разгружается в желоба.
Схема флотации – определенная последовательность операций флотации в сочетании с операциями измельчения и классификации. При выборе схемы флотации учитывают характер и размер вкрапленности полезных минералов, их содержание в руде и флотируемость, требования к качеству концентратов и ряд технико-экономических факторов. Начальная операция флотационного процесса в схеме при извлечении одного или нескольких металлов называется основной флотацией, флотация концентрата основной флотации – перечистной флотацией, а флотация хвостов основной флотации – контрольной флотацией.
Совокупность основной, контрольной и перечистных операций, при которых выделяется один или несколько готовых (не подвергаемых дальнейшей флотации) продуктов, образует цикл флотации.
Флотация бывает прямой и обратной. Если полезный минерал переходит в пенный продукт, то флотация называется прямой; если он остается в камерном продукте, то обратной. В практике обогащения применяют, в основном, прямую флотацию.
Флотация является основным процессом обогащения сульфидных руд всех цветных металлов.
Источник
Горнодобывающая промышленность никогда не обходится без такого метода обработки полезных ископаемых, как обогащение. Это процесс, при котором концентрация ценного сырья в добытой породе увеличивается, что повышает эффективность его использования. Например, железная руда представляет собой комплекс минералов, содержание железа в которых может колебаться от 10 до 60%.
Чтобы очистить сырье от примесей и прибегают к процессу обогащения, после которого эти цифры увеличиваются до 70-90%. Это первичная обработка твердых полезных ископаемых. Прежде чем приступить к нему, руду необходимо подготовить. В зависимости от вида сырья, его дробят, обжигают и промывают. Дальнейшее производство зависит от физико-химических свойств.
Основы обогащения полезных ископаемых
Исходя из минерального состава сырья, которое требует обогащения, существует большое количество способов его очищения. Принцип действия заключается в разделении ценной породы и пустой, благодаря чему концентрация полезного вещества в переработанном материале значительно повышается.
Есть несколько видов обогащения:
- электрическое,
- гравитационное,
- магнитное,
- радиологическое
- химическое.
Его выбор зависит от плотности материала, его магнитной или электрической восприимчивости, адсорбционной способности, химического состава, агрегатного состояния и кристалло-химической структуры. Также влияет и уровень взаимодействия пустой и ценной породы, насколько сильна их связь. Часто возникают случаи комбинирования этих методов, для повышения эффективности работы. Обогащение может проводиться в несколько этапов, когда в пустой породе остаются маленькие частички полезного ископаемого.
Первое промышленное применение обогащения сырья датируется 1700 годом, когда для добычи золота, оно размачивалось и фильтровалось. Но различные методы существовали в примитивном виде еще до нашей эры.
Гравитационное разделение
Основа обогащения полезных ископаемых этого типа лежит в распределении материалов по плотности, относительно среды, в которую помещается взвесь. Самым распространенным в горнодобывающей промышленности является применение гидравлического прибора. Пласт полезных ископаемых постепенно поддается воздействию турбулентного потока жидкости. В результате этого, минералы разрыхляются и разделяются в зависимости от плотности.
1 – бункер; 2 – питатель; 3 – грохот; 4 – конвейер; 5 – дробилка; 6 – конвейерные весы; 7 – отсадочные машины; 8, 9, 10 – спиральный, гидравлический, реечный классификаторы; 11 – гидроциклон; 12 – концентрационный стол; 13 – сгуститель; 14 – мельница; 15 – контактный чан; 16 – флотационная машина”> Pис. 1. Cхема обогащения оловянной руды c предварительной гидравлической классификацией: 1 – бункер; 2 – питатель; 3 – грохот; 4 – конвейер; 5 – дробилка; 6 – конвейерные весы; 7 – отсадочные машины; 8, 9, 10 – спиральный, гидравлический, реечный классификаторы; 11 – гидроциклон; 12 – концентрационный стол; 13 – сгуститель; 14 – мельница; 15 – контактный чан; 16 – флотационная машина.
Легкая фракция быстро поднимается на поверхность, а в дальнейшем собирается. Этот процесс не позволяет достигнуть высокой точности сепарации, поэтому сейчас частота его применения снизилась. Преимущество гравитационного обогащения в его себестоимости – она достаточно низкая. Но, из-за использования воды, он может стать причиной неблагоприятной экологической ситуации.
Гравитационное обогащение применяется почти для каждого вида переработки полезных ископаемых. Предварительно необходимо провести несколько подготовительных этапов. Например, дробление сырья в грохотах, благодаря чему можно отделить небольшое количество пустой породы. Применяется и вымачивание, опрыскивание, обжигание. Это значительно увеличивает его эффективность.
Тяжелые среды
Самым простым является обогащение в тяжелых средах, где нет потока жидкости, а разделение происходит под воздействием гравитации. Легкие частицы отделяются от тяжелых на несколько фракций. В качестве жидкостей может выступать раствор хлоридов кальция или цинка, органические смеси.
Концентрационные столы
Эталоном гравитационного разделения полезных ископаемых является обогащение на концентрационных столах. Первое упоминание об этом методе можно найти еще в трудах Геродота, который описывал древне-грецкие способы добычи золота. Установка представляет собой стол с выточенными горизонтальными желобами (рифлями), наклоненный под углом 1-10 градусов. Сверху подается напор суспензии, жидкости с дробленым полезным ископаемым. Под воздействием силы тяжести, частички оседают в желобах, а пустая порода остается в потоке. Недостаток этого способа в том, что для эффективного разделения сырья, руду необходимо раздробить до 0,1-13 мм. В противном случае большое количество пустой породы попадет в отсадку.
Сепарация на шлюзах
Для обогащения рассыпных руд (золота, вольфрама, олова и других редких металлов), используют сепарацию на шлюзах. Для разделения используется специальный материал с шероховатым покрытием – трафарет, в котором и задерживается ценное сырье. Жидкость может подаваться на ступенчатую и желобную ровную конструкцию, в зависимости от вида полезного ископаемого.
Интересно, что этот вид обогащения появился очень давно, и стал причиной появления легенды о золотом руно. В древности шкуры молодых овец смазывали жиром, и укладывали на дно желобов, куда подавалась суспензия золотоносного песка. Ценный металл задерживался в ворсинках, а жир не позволял ему двигаться вместе с потоком.
Винтовые сепараторы
Жидкость, в которую помещена взвесь полезного ископаемого, движется по вертикальной оси, по винтовому желобу. Здесь на породу воздействует две силы – гравитационная и центробежная. В результате этого процесса, тяжелые частицы перемещаются вдоль внутреннего борта желоба, а легкие по его внешней части. По завершению движения жидкости, они попадают в разные отсеки, и отправляются на дальнейшую переработку или утилизируются.
Центробежный концентратор
Этот способ является наиболее современным и эффективным на сегодня среди гравитационных. Его особенность в том, что он позволяет отделить минимальные частички полезного ископаемого от пустой породы. Благодаря воздействию центробежной силы, удается увеличить массу частиц, в результате чего и происходит сепарация. Для осуществления этого метода используется специальная установка – гидроциклон. В нем происходит вихревое вращение жидкости, благодаря чему образуется центробежная сила, заставляющая породу разделяться на фракции.
Воздушная сепарация (подвид гравитационной)
Это один из самых старых способов обогащения полезных ископаемых, но его не часто применяют в промышленных целях. Использование воздушной сепарации было разработано для районов, которые не обеспечены достаточным количеством водных ресурсов, из-за чего их использование не рентабельно. Одно из значительных преимуществ этого способа – минимальный вред окружающей среды.
Принцип действия воздушной сепарации в том, что струя воздуха, подающаяся под давлением, разрушает породу, высвобождая необходимое сырье. Это подходит для железных руд, где плотность пустого сырья значительно ниже, чем металла. Впервые его применили в Мексике, для обработки золотоносной руды, где воздушная сепарация показала хороший результат. Существенным недостатком этого метода является климатическая зависимость – влажность окружающей среды не должна превышать 5-6%.
Магнитное обогащение
Метод магнитного обогащения используется только для руд, которые имеют в составе магнитное сырье (железных, марганцевых, медно-никелевых руд и руд редких металлов). Его проводят в мокрой и сухой среде, в зависимости от плотности и гидрофильности пустой породы. Иногда в качестве первичной обработки сырья используется обжиг – он повышает его магнитные свойства.
Преимущество этого метода в низкой себестоимости. Устройства для сепарации долговечны, не требуют постоянного обслуживания и автоматизированы. К тому же он не оказывает негативного влияния на экологию местности. Учитывая постоянное развитие технологий, эффективность магнитной сепарации значительно увеличивается.
Руды, подлежащие магнитному обогащению:
1. Сильномагнитные:
1.1. магнетит,
1.2. франклит,
1.3. пиротин,
1.4. мартит
2. Магнитные:
2.1. ильменит,
2.2. гематит,
2.3. хромит
3. Слабомагнитные:
3.1. глауконит,
3.2. доломит,
3.3. пирит.
4. Не магнитные:
4.1. нерудные ископаемые.
Обогащение проводится в магнитном сепараторе, где разделяется смесь минералов и металлических включений. Он может быть роторным, барабанным и валковым, но принцип разделения остается одинаковым. При движении магнитной головки, восприимчивый материал движется по направлению к полю, а пустая порода не меняет своей траектории. Существуют приспособления, которые скомбинированы с грохотами, для вибрационного дробления материала.
Магнитная сепарация впервые была изобретена еще в 1792 году, но ее промышленное использование началось только в 19 веке.
Электрическое обогащение
Одним из самых новых и эффективных методов является электрическая сепарация сырья. Но он подходит только для полезных ископаемых, которые восприимчивые к воздействию тока.
Способы электрической сепарации материала:
- Электрическая.
- Электростатическая.
- Диэлектрическая.
- Трибоэлектрическая.
- Трибоадгезионная.
Основа этого метода – существенные различия в их электрической природе. Прежде, чем приступить к процессу обогащения, необходимо зарядить восприимчивый материал. Благодаря этому, его можно будет отделить от пустой породы. Изменения электрического поля можно достигнуть несколькими путями – индукция, касание, воздействие газовыми ионами.
Принцип разделения основывается на том, что поведение проводника и диэлектрика разное. При контакте одноименных зарядов, они отталкиваются, а непроводник остается неподвижным. Если заряды разные, то они притягиваются. Из-за этого, порода с большим количеством полезного сырья отделяется от пустой. Электрическая сепарация – один из самых эффективных процессов обогащения полезных ископаемых, без применения химических реагентов.
Флотационное обогащение
Чаще всего этот способ применяется в обогащении медной руды. В основе принципа действия этого метода лежит разделение жидкости на фракции, при котором гидрофобные частицы удерживаются на поверхности легкого слоя, и поднимаются на поверхность с пеной или реагентом.
Существует 2 типа флотационных методов обогащения:
- Жидкость-жидкость (масляная, пленочная).
- Жидкость-газ (пенная).
В промышленных масштабах чаще используется пенная флотация. Жидкость состоит из реагентов, которые увеличивают адгезивные свойства полезного ископаемого. При вспенивании суспензии, частицы металла, например, меди, прикрепляются к пузырькам воздуха, и всплывают на поверхность. Пустая порода оседает на дно, а пена собирается и отправляется в дальнейшее производство.
Пленочная и масляная сепарация появилась намного раньше. В качестве реагента, к которому прикреплялось полезное ископаемое, использовались перья смазанные жиром или смола. При всплывании на поверхность, они задерживали в себе частички гидрофобных материалов. Но, в сравнении с ним, пенная сепарация несколько эффективнее и дешевле.
Радиометрическая сепарация
Этот метод является одним из самых дорогих, используется для руд с низким содержанием полезного сырья. Например, он высокоэффективен в поиске драгоценных камней, концентрация которых в породе может достигать 0,1%. Основа обогащения полезных ископаемых этим методом – способность минералов к излучению или восприимчивость к облучению Он чувствителен для частичек 2-300 мм. Принцип действия построен на восприимчивости ископаемого к излучению. Во время облечения, камни начинают источать свечение. Специальный прибор регистрирует его и подает поток воздуха, в результате чего, частица выбрасывается в приемник.
Химическая сепарация
При обработке урановых, вольфрамовых, медных, медно-никелевых руд активно используется и метод химического обогащения. Также для обезжелезивания каолинов, кварца и полевого шпата. Ископаемое помещают в специальный реагент, который растворяет пустую породу, не меняя состав полезного сырья. Благодаря этому методу можно получить высокую эффективность обогащения, но его себестоимость достаточно высока. Поэтому его используют в случаях, когда концентрация материала в руде достаточно низкая, из-за чего другие методы сепарации будут не результативны.
Одним из самых новых является химико-биологическое обогащение. В основе лежит принцип выщелачивания, разрушения кристаллических решеток пустой породы бактериями, например, Thiobacillus ferroxidans, Ferrobacillus tiooxidans. Также продукты жизнедеятельности этих бактерий являются сильными окислителями, благодаря чему разрешение пустой породы происходит намного быстрее. В результате этого процесса можно перерабатывать руды с низким содержанием полезного ископаемого.
Обогатительные фабрики
Обогащение полезных ископаемых – это способ увеличения концентрации ценного сырья, и отделения его от пустой породы. Оно необходимо для получения чистых металлов, угля, драгоценных камней. Каждое горнодобывающее предприятие не может обойтись без обогатительной фабрики, где и происходит процесс сепарации. Они могут, как располагать на месте добычи полезных ископаемых, так и при заводах, которые перерабатывают уже готовое сырье.
Современные обогатительные фабрики являются полностью автоматизированными, а речное вмешательство сведено до минимума. На них в сутки может быть переработано до 100 тысяч тонн руды. Очень часто методы обогащения полезных ископаемых комбинируются, как, например, химический и флотацинный.