Номинальная полезная мощность трехфазного асинхронного двигателя
Содержание:
- Расчет мощности электродвигателя.
- Расчет тока электродвигателя.
- Расчет коэффициента мощности электродвигателя.
- Расчет КПД электродвигателя.
1. Расчет мощности электродвигателя
Расчет мощности электродвигателя по току можно произвести с помощью нашего онлайн калькулятора:
Расчет мощности трехфазного электродвигателя
Полученный результат можно округлить до ближайшего стандартного значения мощности.
Стандартные значения мощностей электродвигателей: 0,25; 0,37; 0,55; 0,75; 1,1; 1,5; 2,2; 3,0; 4,0; 5,5; 7,5; 11; 15; 18,5; 22; 30; 37; 45; 55; 75 кВт и т.д.
Расчет мощности двигателя производится по следующей формуле:
P=√3UIcosφη
где:
- U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
- I — Номинальный ток электродвигателя (берется из паспортных данных электродвигателя, а при их отсутствии определяется расчетным путем);
- cosφ — Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);
- η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);
2. Расчет тока электродвигателя
Расчет номинального и пускового тока электродвигателя по мощности можно произвести с помощью нашего онлайн калькулятора:
Расчет тока трехфазного электродвигателя
Укажите мощность электродвигателя в килоВаттах
Укажите номинальное напряжение
Укажите коэффициент мощности (cosφ)*
*при отсутствии данных укажите значение:
от 0,75 до 0,8 – для двигателей мощностью до 1,1 кВт
от 0,8 до 0,85 – для двигателей мощностью 1,1 – 7,5 кВт
от 0,85 до 0,9 – для двигателей мощностью более 7,5 кВт
*при отсутствии данных укажите значение:
от 70 до 75 – для двигателей мощностью до 1,1 кВт
от 75 до 80 – для двигателей мощностью 1,1 – 7,5 кВт
от 80 до 85 – для двигателей мощностью более 7,5 кВт
Расчет номинального тока двигателя производится по следующей формуле:
Iном=P/√3Ucosφη
где:
- P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателя либо определяется рассчетным путем);
- U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
- cosφ — Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);
- η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);
Расчет пускового тока электродвигателя производится по формуле:
Iпуск=Iном*K
где:
- К — Кратность пускового тока, данная величина берется из паспорта электродвигателя, либо из каталожных данных (в приведенном выше онлайн калькуляторе кратность пускового тока определяется приблизительно исходя из прочих указанных характеристик электродвигателя).
3. Расчет коэффициента мощности электродвигателя
Онлайн расчет коэффициента мощности (cosφ) электродвигателя
Расчет коэффициента мощности трехфазного электродвигателя
Расчет cosφ (косинуса фи) двигателя производится по следующей формуле:
cosφ=P/√3UIη
где:
- P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателя либо определяется рассчетным путем);
- U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
- I — Номинальный ток электродвигателя (берется из паспортных данных электродвигателя, а при их отсутствии определяется расчетным путем);
- η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);
4. Расчет КПД электродвигателя
Онлайн расчет КПД (коэффициента полезного действия) электродвигателя
Расчет КПД трехфазного электродвигателя
Укажите мощность электродвигателя в килоВаттах
Укажите номинальное напряжение
Укажите коэффициент мощности (cosφ)*
*при отсутствии данных укажите значение:
от 0,75 до 0,8 – для двигателей мощностью до 1,1 кВт
от 0,8 до 0,85 – для двигателей мощностью 1,1 – 7,5 кВт
от 0,85 до 0,9 – для двигателей мощностью более 7,5 кВт
Расчет коэффициента полезного действия электродвигателя производится по следующей формуле:
η=P/√3UIcosφ
где:
- P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателя либо определяется рассчетным путем);
- U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
- I — Номинальный ток электродвигателя (берется из паспортных данных электродвигателя, а при их отсутствии определяется расчетным путем);
- cosφ — Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);
Оказались ли полезны для Вас данные онлайн калькуляторы? Или может быть у Вас остались вопросы? Напишите нам в комментариях!
Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.
↑ Наверх
В этой статье мы разберем, что такое мощность трехфазного асинхронного двигателя и как ее рассчитать.
Понятие мощности электродвигателя
Мощность – пожалуй, самый важный параметр при выборе электродвигателя. Традиционно она указывается в киловаттах (кВт), у импортных моделей – в киловаттах и лошадиных силах (л.с., HP, Horse Power). Для справки: 1 л.с. приблизительно равна 0,75 кВт.
На шильдике двигателя указана номинальная полезная (отдаваемая механическая) мощность. Это та мощность, которую двигатель может отдавать механической нагрузке с заявленными параметрами без перегрева. В формулах номинальная механическая мощность обозначается через Р2.
Электрическая (потребляемая) мощность двигателя Р1 всегда больше отдаваемой Р2, поскольку в любом устройстве преобразования энергии существуют потери. Основные потери в электродвигателе – механические, обусловленные трением. Как известно из курса физики, потери в любом устройстве определяются через КПД (ƞ), который всегда менее 100%. В данном случае справедлива формула:
Р2 = Р1 · ƞ
КПД в двигателях зависит от номинальной мощности – у маломощных моделей он может быть менее 0,75, у мощных превышает 0,95. Приведенная формула справедлива для активной потребляемой мощности. Но, поскольку электродвигатель является активно-реактивной нагрузкой, для расчета полной потребляемой мощности S (с учетом реактивной составляющей) нужно учитывать реактивные потери. Реактивная составляющая выражается через коэффициент мощности (cosϕ). С её учетом формула номинальной мощности двигателя выглядит так:
Р2 = Р1 · ƞ = S · ƞ · cosϕ
Мощность и нагрев двигателя
Номинальная мощность обычно указывается для температуры окружающей среды 40°С и ограничена предельной температурой нагрева. Поскольку самым слабым местом в двигателе с точки зрения перегрева является изоляция, мощность ограничивается классом изоляции обмотки статора. Например, для наиболее распространенного класса изоляции F допустимый нагрев составляет 155°С при температуре окружающей среды 40°С.
В документации на электродвигатели приводятся данные, из которых видно, что номинальная мощность двигателя падает при повышении температуры окружающей среды. С другой стороны, при должном охлаждении двигатели могут длительное время работать на мощности выше номинала.
Мы рассмотрели потребляемую и отдаваемую мощности, но следует сказать, что реальная рабочая потребляемая мощность P (мощность на валу двигателя в данный момент) всегда должна быть меньше номинальной:
Р 2 1
Это необходимо для предотвращения перегрева двигателя и наличия запаса по перегрузке. Кратковременные перегрузки допустимы, но они ограничены прежде всего нагревом двигателя. Защиту двигателя по перегрузке также желательно устанавливать не по номинальному току (который прямо пропорционален мощности), а исходя из реального рабочего тока.
Современные производители в основном выпускают двигатели из ряда номиналов: 1,5, 2,2, 5,5, 7,5, 11, 15, 18,5, 22 кВт и т.д.
Расчет мощности двигателя на основе измерений
На практике мощность двигателя можно рассчитать, прежде всего, исходя из рабочего тока. Ток измеряется токовыми клещами в максимальном рабочем режиме, когда рабочая мощность приближается к номинальной. При этом температура корпуса двигателя может превышать 100 °С, в зависимости от класса нагревостойкости изоляции.
Измеренный ток подставляем в формулу для расчета реальной механической мощности на валу:
Р = 1,73 · U · I · cosϕ · ƞ, где
- U – напряжение питания (380 или 220 В, в зависимости от схемы подключения – «звезда» или «треугольник»),
- I – измеренный ток,
- cosϕ и ƞ – коэффициент мощности и КПД, значения которых можно принять равными 0,8 для маломощных двигателей (менее 5,5 кВт) или 0,9 для двигателей мощностью более 15 кВт.
Если нужно найти номинальную мощность двигателя, то полученный результат округляем в бОльшую сторону до ближайшего значения из ряда номиналов.
Р2 > Р
Если необходимо рассчитать потребляемую активную мощность, используем следующую формулу:
Р1 = 1,73 · U · I · ƞ
Именно активную мощность измеряют счетчики электроэнергии. В промышленности для измерения реактивной (и полной мощности S) применяют дополнительное оборудование. При данном способе можно не использовать приведенную формулу, а поступить проще – если двигатель подключен в «звезду», измеренное значение тока умножаем на 2 и получаем приблизительную мощность в кВт.
Расчет мощности при помощи счетчика электроэнергии
Этот способ прост и не требует дополнительных инструментов и знаний. Достаточно подключить двигатель через счетчик (трехфазный узел учета) и узнать разницу показаний за строго определенное время. Например, при работе двигателя в течении часа разница показаний счетчика будет численно равна активной мощности двигателя (Р1). Но чтобы получить номинальную мощность Р2, нужно воспользоваться приведенной выше формулой.
Другие полезные материалы:
Степени защиты IP
Трехфазный двигатель в однофазной сети
Типичные неисправности электродвигателей
В этой статье мы разберем, что такое мощность трехфазного асинхронного двигателя и как ее рассчитать.
Понятие мощности электродвигателя
Мощность – пожалуй, самый важный параметр при выборе электродвигателя. Традиционно она указывается в киловаттах (кВт), у импортных моделей – в киловаттах и лошадиных силах (л.с., HP, Horse Power). Для справки: 1 л.с. приблизительно равна 0,75 кВт.
На шильдике двигателя указана номинальная полезная (отдаваемая механическая) мощность. Это та мощность, которую двигатель может отдавать механической нагрузке с заявленными параметрами без перегрева. В формулах номинальная механическая мощность обозначается через Р2.
Электрическая (потребляемая) мощность двигателя Р1 всегда больше отдаваемой Р2, поскольку в любом устройстве преобразования энергии существуют потери. Основные потери в электродвигателе – механические, обусловленные трением. Как известно из курса физики, потери в любом устройстве определяются через КПД (ƞ), который всегда менее 100%. В данном случае справедлива формула:
Р2 = Р1 · ƞ
КПД в двигателях зависит от номинальной мощности – у маломощных моделей он может быть менее 0,75, у мощных превышает 0,95. Приведенная формула справедлива для активной потребляемой мощности. Но, поскольку электродвигатель является активно-реактивной нагрузкой, для расчета полной потребляемой мощности S (с учетом реактивной составляющей) нужно учитывать реактивные потери. Реактивная составляющая выражается через коэффициент мощности (cosϕ). С её учетом формула номинальной мощности двигателя выглядит так:
Р2 = Р1 · ƞ = S · ƞ · cosϕ
Мощность и нагрев двигателя
Номинальная мощность обычно указывается для температуры окружающей среды 40°С и ограничена предельной температурой нагрева. Поскольку самым слабым местом в двигателе с точки зрения перегрева является изоляция, мощность ограничивается классом изоляции обмотки статора. Например, для наиболее распространенного класса изоляции F допустимый нагрев составляет 155°С при температуре окружающей среды 40°С.
В документации на электродвигатели приводятся данные, из которых видно, что номинальная мощность двигателя падает при повышении температуры окружающей среды. С другой стороны, при должном охлаждении двигатели могут длительное время работать на мощности выше номинала.
Мы рассмотрели потребляемую и отдаваемую мощности, но следует сказать, что реальная рабочая потребляемая мощность P (мощность на валу двигателя в данный момент) всегда должна быть меньше номинальной:
Р < Р2 < Р1 < S
Это необходимо для предотвращения перегрева двигателя и наличия запаса по перегрузке. Кратковременные перегрузки допустимы, но они ограничены прежде всего нагревом двигателя. Защиту двигателя по перегрузке также желательно устанавливать не по номинальному току (который прямо пропорционален мощности), а исходя из реального рабочего тока.
Современные производители в основном выпускают двигатели из ряда номиналов: 1,5, 2,2, 5,5, 7,5, 11, 15, 18,5, 22 кВт и т.д.
Расчет мощности двигателя на основе измерений
На практике мощность двигателя можно рассчитать, прежде всего, исходя из рабочего тока. Ток измеряется токовыми клещами в максимальном рабочем режиме, когда рабочая мощность приближается к номинальной. При этом температура корпуса двигателя может превышать 100 °С, в зависимости от класса нагревостойкости изоляции.
Измеренный ток подставляем в формулу для расчета реальной механической мощности на валу:
Р = 1,73 · U · I · cosϕ · ƞ, где
- U – напряжение питания (380 или 220 В, в зависимости от схемы подключения – «звезда» или «треугольник»),
- I – измеренный ток,
- cosϕ и ƞ – коэффициент мощности и КПД, значения которых можно принять равными 0,8 для маломощных двигателей (менее 5,5 кВт) или 0,9 для двигателей мощностью более 15 кВт.
Если нужно найти номинальную мощность двигателя, то полученный результат округляем в бОльшую сторону до ближайшего значения из ряда номиналов.
Р2 > Р
Если необходимо рассчитать потребляемую активную мощность, используем следующую формулу:
Р1 = 1,73 · U · I · ƞ
Именно активную мощность измеряют счетчики электроэнергии. В промышленности для измерения реактивной (и полной мощности S) применяют дополнительное оборудование. При данном способе можно не использовать приведенную формулу, а поступить проще – если двигатель подключен в «звезду», измеренное значение тока умножаем на 2 и получаем приблизительную мощность в кВт.
Расчет мощности при помощи счетчика электроэнергии
Этот способ прост и не требует дополнительных инструментов и знаний. Достаточно подключить двигатель через счетчик (трехфазный узел учета) и узнать разницу показаний за строго определенное время. Например, при работе двигателя в течении часа разница показаний счетчика будет численно равна активной мощности двигателя (Р1). Но чтобы получить номинальную мощность Р2, нужно воспользоваться приведенной выше формулой.
1. Виды электродвигателей
Наибольшее распространение имеет трехфазный асинхронный электродвигатель. Электродвигатели постоянного тока и синхронные применяются редко.
Большинство электрифицированных машин нуждаются в приводе мощностью от 0,1 до 10 кВт, значительно меньшая часть — в приводе мощностью в несколько десятков кВт. Как правило, для привода рабочих машин используются короткозамкнутые трехфазные электродвигатели. По сравнению с фазным такой электродвигатель имеет более простую конструкцию, меньшую стоимость, большую надежность в эксплуатации и простоту в обслуживании, несколько более высокие эксплутационные показатели (коэффициент мощности и коэффициент полезного действия), а при автоматическом управлении требует простой аппаратуры. Недостаток короткозамкнутых электродвигателей — относительно большой пусковой ток. При соизмеримости мощностей трансформаторной подстанции и электродвигателя его пуск сопровождается заметным снижением напряжения сети, что усложняет как пуск самого двигателя, так и работу соседних токоприемников.
Наряду с трехфазными асинхронными короткозамкнутыми электродвигателями основного исполнения применяются также отдельные модификации этих двигателей: с повышенным скольжением, многоскоростные, с фазным ротором, с массивным ротором и т. д. Электродвигатели с фазным ротором применяют и в тех случаях, когда мощность питающей сети недостаточна для пуска двигателя с короткозамкнутым ротором.
Механические характеристики асинхронных электродвигателей с короткозамкнутым ротором в значительной мере зависят от формы и размеров пазов ротора, а также от способа выполнения роторной обмотки. По этим признакам
Рис. 1. Кривые моментов M = f(S) асинхронных электродвигателей
различают электродвигатели с нормальным ротором (нормальная беличья клетка), с глубоким пазом и с двумя клетками на роторе. Конструкция ротора короткозамкнутых асинхронных электродвигателей общего назначения мощностью свыше 500 Вт предопределяет явление вытеснения тока в обмотке, эквивалентно увеличению ее активного сопротивления. Поэтому, а также вследствие насыщения магнитных путей потоков рассеивания такие электродвигатели (в первую очередь обмотки ротора) обладают переменными параметрами и аналитические выражения их механических характеристик усложняются. Увеличение активного сопротивления ротора в период пуска вызывает увеличение начального пускового момента при некотором снижении силы начального пускового тока (рис. 1).
2. Основные характеристики электродвигателей
Номинальный режим электродвигателя соответствует данным, указанным на его щитке (паспорте). В этом режиме двигатель должен удовлетворять требованиям, установленным ГОСТом.
Существует восемь различных режимов работы, из них основными можно считать:
· продолжительный номинальный режим;
· кратковременный номинальный режим с длительностью рабочего периода 10, 30 и 90 мин;
· повторно-кратковременный номинальный режим с продолжительностью включения (ПВ) 15, 25, 40, 60%, с продолжительностью одного цикла не более 10 мин.
Номинальной мощностью Рн электродвигателя называется указанная на щитке полезная механическая мощность на валу при номинальном режиме работы. Номинальная мощность выражается в Вт или кВт.
Номинальная частота вращения nн вала электродвигателя называется указанное на щитке число оборотов в минуту, соответствующее номинальному режиму.
Номинальный момент вращения — момент, развиваемый двигателем на валу при номинальной мощности и номинальной частоте вращения:
где:
Мн — номинальный момент вращения, Н·м (1 кгс·м = 9,81 Н·м ≈ 10 Н·м);
Рн — номинальная мощность, кВт;
nн — номинальная частота вращения, об/мин.
Номинальный к.п.д. hн электродвигателя — отношение его номинальной
мощности к мощности, потребляемой им из сети при номинальном напряжении:
где:
Рн — номинальная мощность, кВт;
Uн — номинальное (линейное) напряжение, В;
Iн — номинальная сила тока, А;
cosφн — номинальный коэффициент мощности.
Номинальной силой тока электродвигателя называется сила тока, соответствующая номинальному режиму. Действительное значение силы тока при номинальном режиме может отличаться от указанного на щитке электродвигателя в пределах установленных допусков для к.п.д. и коэффициента мощности.
Максимальный вращающий момент электродвигателя — наибольший вращающий момент, развиваемый при рабочем соединении обмоток и постепенном повышении момента сопротивления на валу сверх номинального при условии, что напряжение на зажимах двигателя и частота переменного тока остаются неизменными и равными номинальным значениям.
Начальный пусковой вращающий момент электродвигателя — момент вращения его при неподвижном роторе, номинальных значениях напряжения и частоты переменного тока и рабочем соединении обмоток.
Минимальным вращающим моментом электродвигателя в процессе пуска называется наименьший вращающий момент, развиваемый двигателем при рабочем соединении обмоток и частоте вращения в пределах от нуля до значения, соответствующего максимальному вращающему моменту (напряжение на зажимах двигателя и частота переменного тока должны оставаться неизменными и равными их номинальным значениям).
Номинальная частота вращения вала электродвигателя является следующим за мощностью параметром, от которого в значительной мере зависят конструктивное оформление, габариты, стоимость и экономичность работы электропривода. Наиболее приемлемыми в диапазоне мощностей от 0,6 до 100 кВт являются частоты вращения 3000, 1500 и 1000 об/мин (синхронные). Электродвигатели с частотой вращения 750 об/мин (восьмиполюсные) малых мощностей имеют низкие энергетические показатели. При одинаковой мощности электродвигатели с более высокой частотой вращения имеют более высокие значения к.п.д. и cosφ, а также меньшие размеры и массу, что определяет их меньшую стоимость.
Сила тока холостого хода I0 в значительной мере определяется силой намагничивающего тока I0Р. приближенно можно считать I0 = I0P . Для машин
основного исполнения относительное значение силы тока холостого хода
I0 = (0,2—0,6)Iн (оно тем больше, чем меньше номинальная частота вращения и мощность электродвигателя). Зависимость тока холостого хода от частоты вращения электродвигателя приведена в таблице 2.1.
Таблица 2.1. Токи холостого хода для двигателей основного исполнения
Мощность, кВт | Среднее значение токов холостого хода (в долях от силы номинального тока) при синхронной частоте вращения, об/мин | ||||
3000 | 1500 | 1000 | 750 | 600 | |
0,5—1 | 0,4 | 0,55 | 0,6 | — | — |
1,1—5 | 0,35 | 0,5 | 0,55 | 0,6 | — |
5,1—10 | 0,25 | 0,45 | 0,5 | 0,55 | 0,6 |
10,1—25 | 0,2 | 0,4 | 0,45 | 0,5 | 0,55 |
25,1—50 | 0,18 | 0,35 | 0,4 | 0,45 | 0,5 |
Если известны номинальный коэффициент мощности и кратность максимального момента mк, то сила тока холостого хода при номинальном напряжении
I1н — ток статора при номинальной нагрузке, А.
При номинальных напряжениях и частоте переменного тока сила тока холостого хода от изменения нагрузки практически не зависит. Определить из опыта I0 нетрудно, если электродвигатель не соединен с рабочей машиной. По значению I0 можно в известной мере судить о состоянии электродвигателя, в частности после его ремонта.
К.п.д. электродвигателя при различной степени нагрузки
с достаточной для практических расчетов точностью определяют по формуле:
— коэффициент потерь, представляющих собой отношение постоянных потерь к переменным при номинальной нагрузке.
К постоянным потерям, практически не зависящим от нагрузки, относятся механические потери, и потери в стали, к переменным — электрические потери в обмотках, зависящие от силы тока нагрузки, и добавочные потери — не учтенные ранее перечисленными видами потерь. Постоянные потери в значительной степени зависят от числа полюсов двигателя и его мощности.
Переменные потери при номинальной нагрузке определяют с помощью каталожных данных, приведенных в таблице 2.2.
где:
Рн — номинальная мощность двигателя;
ΔРн — полные потери двигателя при полной нагрузке;
ΔР0 — постоянные потери (Δm0= Δmмех + Δm–).
Таблица 2.2. Усредненное значение постоянных потерь мощности, рекомендуемое для практических расчетов
Число полюсов | Номинальная мощность Рн, кВт | Механические потери DРмех, %Рн | Потери в стали DРс, %Рн | |||
в пределах | рекомендуемые при расчетах для электродвигателей типов | в пределах | рекомендуемые при расчетах | |||
А2 | АО2 | |||||
2 | 10 40 | 0,7—4,9 | 0,9 | 3,4 | 3,1—3,9 2,0—2,9 | 3,5 2,5 |
4 | 10 40 | 0,4—1,4 | 0,5 | 0,9 | 3,0—5,6 2,2—3,4 | 4,3 2,8 |
6 | 10 40 | 0,32—0,82 | 0,44 | 0,6 | 3,0—6,0 2,1—3,0 | 4,5 2,6 |
8 | 10 40 | 0,25—0,62 | 0,3 | 0,45 | 3,5—4,8 2,0—3,3 | 4,2 2,6 |
При наличии кривой к.п.д. в функции нагрузки касательная к этой кривой в начальной точке отсекает на горизонтали, проведенной на уровне η + 1, отрезок р0, равный в масштабе абсцисс постоянным потерям (рис. 2).
Коэффициент мощности cosφ1 существенно зависит от реактивной мощности, потребляемой из сети, и степени нагрузки двигателя. Реактивная мощность, потребляемая из сети,
где:
Q’p, q1, q2— реактивная мощность, расходуемая на образование соответственно основного магнитного поля двигателя, полей рассеивания обмоток статора и ротора. Основную часть реактивной мощности составляет мощность Q’p которая из-за наличия воздушного зазора значительно больше, чем в трансформаторах, и определяет относительно большое значение намагничивающего тока: I0 = (0,2—0,6)Iн .
Обычно у трехфазных асинхронных электродвигателей при номинальной нагрузке cosφ1н= 0,7—0,92. Большие значения коэффициента мощности относятся к мощным двигателям с числом полюсов 2p = 2 и 4. При уменьшении нагрузки cosφ1 уменьшается до значения cosφ10 ≈ 0,09—0,18 при холостом ходе. Средние значения cosφ и к.п.д. трехфазных электродвигателей даны в таблице 2.3.
Рис. 2. Изменение к.п.д. асинхронного электродвигателя
в зависимости от нагрузки на валу
Таблица 2.3. Практические пределы значений к.п.д. и cos j трехфазных асинхронных двигателей основного исполнения
Мощность, кВт | Синхронная частота вращения, об/мин | К.п.д. | cosφ |
0,8—1,1 | 3000 | 0,78—0,795 | 0,86—0,87 |
0,6—1,1 | 1500 | 0,72—0,78 | 0,76—0,8 |
0,4—1,1 | 1000 | 0,68—0,76 | 0,65—73 |
1,5—7,5 | 3000 | 0,805—0,87 | 0,88—0,89 |
1500 | 0,80—0,885 | 0,81—0,87 | |
1000 | 0,79—0,87 | 0,75—0,82 | |
2,2—7,5 | 750 | 0,795—0,865 | 0,69—0,81 |
10—22 | 3000 | 0,88—0,89 | 0,88—0,9 |
1500 | 0,885—0,9 | 0,87—0,9 | |
1000 | 0,87—0,9 | 0,86—0,9 | |
750 | 0,87—0,9 | 0,79—0,84 | |
30—55 | 3000 | 0,89—0,91 | 0,9—0,92 |
1500 | 0,905—0,925 | 0,88—0,92 | |
1000 | 0,9—0,925 | 0,88—0,92 | |
750 | 0,9—0,925 | 0,84—0,9 |
Для к.п.д. и коэффициента мощности допускаются следующие отклонения: к.п.д. (η) машин мощностью до 50 кВт включительно: –0,15 (1 – η);
к.п.д. машин мощностью свыше 50 кВт: –0,1(1 – η);
коэффициента мощности (cosφ):
, но не менее 0,02 и не более 0,07 по абсолютному значению.
Скольжение при номинальной нагрузке трехфазных асинхронных электродвигателей основного исполнения обычно составляет от 1,5 до 6,6%. Большие значения скольжения относятся к меньшим значениям мощности двигателя (табл. 2.4). Требование малой Sн связано с получением высокого к.п.д. и приводит к необходимости иметь малое активное сопротивление обмотки ротора.
Таблица 2.4. Частота вращения ротора трехфазного асинхронного электродвигателя основного исполнения при номинальной нагрузке и стандартной частоте тока 50 Гц
Число полюсов | Частота вращения поля статора (синхронная) nc, об/мин | Частота вращения вала ротора nн |
2 | 3000 | 2815—2940 |
4 | 1500 | 1400—1470 |
6 | 1000 | 930—985 |
8 | 750 | 720—740 |
10 | 600 | 580—585 |
Примечания:
1. В таблице приведены данные для двигателей мощностью от 1,1 до 100 кВт.
2. В серии А2 10-полюсные электродвигатели на синхронную частоту вращения 600 об/мин выпускаются с наименьшей мощностью 17 кВт.
3. Двигатели на 12 полюсов и более выполняют преимущественно мощностью выше 100 кВт.
При номинальном значении напряжения и частоты переменного тока скольжение с изменением нагрузки в пределах от холостого хода до номинальной практически изменяется пропорционально нагрузке (для двигателей, имеющих кратность максимального момента mк ≥ 1,6):
S = bSн,
где:
b — степень загрузки.
При работе электродвигателя с пульсирующей или ударной нагрузкой для
лучшего использования маховых масс целесообразно увеличивать номинальное скольжение. У электродвигателей с повышенным скольжением серии А2 и АО2 номинальное скольжение в зависимости от типоразмера и частоты вращения находится в пределах 6,6—16%.
Критическое скольжение Sк — величина скольжения, соответствующая максимальному моменту электродвигателя. Может быть определена по каталожным данным из выражений:
где:
mк — кратность максимального момента;
mn — кратность начального пускового момента;
Sн — относительное значение номинального скольжения.
Приближенно критическое скольжение
При значениях:
mк | 1,6 | 1,8 | 2,0 | 2,5 | 3,0 |
Sк/Sн | 1,85 | 3,33 | 3,73 | 4,8 | 5,8 |
В среднем можно считать Sк = (4—5)Sн.
Начальная скорость нарастания температуры Δτ, °С/с, обмотки статора короткозамкнутых электродвигателей при заторможенном роторе и номинальном напряжении (без учета отдачи тепла)
где:
ki — кратность начального пускового тока по отношению к номинальному; γ1 — плотность тока (А/мм2) в обмотке статора при номинальной нагрузке; N — коэффициент, равный (для медной обмотки) 200, если процесс нарастания температуры начинается при холодном состоянии двигателя, и 145 — при нагретом состоянии двигателя.
При средних величинах ki = 6—7 и g1 = 5—6 А/мм2 интенсивность нарастания температуры (в нагретом состоянии двигателя) составляет:
Δτ = 5,45—10,6°С/с.
Для трехфазных асинхронных двигателей серии А2 и АО2 при пуске температура обмоток статора нарастает со скоростью не более 7°С/с. В таком случае пребывание двигателя под пусковым током возможно без вреда для изоляции в течение 10—15 с.
Напряжение трехфазных асинхронных электродвигателей должно соответствовать стандартам на данный вид электрической машины. Электродвигатели серии А2 и АО2 мощностью до 100 кВт выпускаются на напряжение 220 Δ, 380 Y и 500 Y В по требованию.
Трехфазные двигатели сельскохозяйственной серии АО2-СХ мощностью 2,2—10 кВт выпускают на 380 Y и мощностью 13—30 кВт при 1500 об/мин — на 380 Δ В.
Трехфазные двигатели серии 4А мощностью 0,12—0,37 кВт рассчитаны на напряжение 220 Δ, 380 Y, а мощностью 0,55—110 кВт — на 220 Δ, 380 Y и 380 Δ, 660 Y В.
Трехфазные асинхронные электродвигатели серии Д мощностью от 0,25 до 4 кВт основного исполнения поставляют для напряжений 220 Δ, 380 Y В.
На напряжение 380 В изготавливаются асинхронные двигатели мощностью до 400 кВт, поэтому применение напряжений 3 и 6 кВ необходимо только для более мощных двигателей.