Мощность электрической цепи и коэффициент полезного действия

Пишу для школьников (для лучшего понимания ими основ физики). Материал излагаю в соответствии с признанной ныне научной трактовкой физических явлений. Критике существующей теории и глубоким теоретическим рассуждениям здесь не место.

На рисунке изображена замкнутая электрическая цепь, состоящая из источника постоянного тока и переменной нагрузки во внешней части цепи.

Источником постоянного тока может быть электрическая машина, о которой говорится в статье “Искровой разряд”; батарея гальванических элементов, аккумулятор и др.

Роль источника тока заключается в создании (генерировании) электрической энергии: в разделении положительных и отрицательных зарядов; в создании и поддерживании разности потенциалов между конечными точками цепи, в которую включена нагрузка (электрическая лампочка, электроплитка. электродвигатель и т. д.).

При прохождении тока через нагрузку электрическая энергия превращается в другие виды энергии :тепловую (в электроплитке); в тепло и свет (в электрической лампе); в механическую энергию (в электродвигателе).

Превращение энергии из одного вида в другой всегда связано с работой.

При прохождении тока по проводнику совершается работа, её совершают электрические силы (или электрическое поле). Кратко эту работу называют работой тока.

Рассматривая участок цепи, по которому проходит ток, получим следующее выражение для работы тока:

Работа тока равна произведению напряжения между концами участка на протекающий ток и время его протекания.

В случае, если участок цепи однородный (не содержит источника тока), то

тогда получим ещё две формулы для работы тока:

Если ток проходит через неподвижный проводник, то единственным результатом работы тока является его нагревание. Тогда количество выделившейся теплоты

Это запись закона Джоуля – Ленца.

Если кроме нагревания ток совершает ещё механическую работу, например, приводя в действие электродвигатель (мотор), то работа

лишь частично переходит в тепло.

В этом случае работа тока больше количества выделившейся теплоты, но закон Джоуля – Ленца выполняется.

Работа, совершаемая током в единицу времени, называется мощностью тока:

Единицей мощности тока является 1 Вт:

1 Вт – мощность выделяемая током 1 А в проводнике, между концами которого поддерживается напряжение 1 В.

Основная формула мощности для участка цепи:

Мощность постоянного тока на любом участке цепи выражается произведением силы тока на напряжение между концами участка цепи.

Так как для однородного участка цепи

то мощность можно найти ещё по формулам:

Обычно говорят не о работе, а о потребляемой из сети некоторым прибором (электроплитка, лампочки и др.) или двигателем (мотором) мощности электрического тока. Говоря о мощности (например, электродвигателя), отмечают, что работа двигателя совершается за счёт тока.

На приборах часто отмечается потребляемая ими мощностьмощность, необходимая для нормальной работы этого прибора.

Согласно закону сохранения энергии, для замкнутой электрической цепи можно записать:

Здесь

есть полная или затраченная работа, совершаемая сторонними силами, существующими внутри источника, по переносу заряда по цепи.

В гальваническом элементе такими силами являются силы химической реакции.

– это полезная работа, совершаемая электрическим полем при прохождении тока через нагрузку;

это работа, совершаемая внутри источника, по преодолению его внутреннего сопротивления.

Так как работа, совершённая за единицу времени, есть мощность, то из уравнения (1) получим выражение для мощности:

Здесь

есть полная или затраченная мощность, это мощность развиваемая источником тока.

это мощность выделяемая внутри источника тока

это полезная мощность, создаваемая во внешней части цепи (на нагрузке).

Здесь U – напряжение на зажимах источника при замкнутой цепи (при разомкнутой цепи оно равно ЭДС источника).

Так как для однородного участка цепи напряжение равно произведению тока на сопротивление, то полезную мощность можно найти ещё по следующей формуле:

Ток в замкнутой цепи

тогда формулу для полезной мощности можно записать так:

Проанализируем зависимость полезной мощности от сопротивления нагрузки.

При коротком замыкании вся развиваемая источником мощность выделяется на его внутреннем сопротивлении в виде теплоты.

Таким образом, полезная мощность, развиваемая во внешней цепи, достигает максимального значения тогда, когда сопротивление нагрузки равно внутреннему сопротивлению источника.

На следующем рисунке показан график зависимости полезной мощности от сопротивления нагрузки.

Получена формула для нахождения максимальной полезной мощности

При этом ток в цепи в два раза меньше тока короткого замыкания:

Но чему при этом будет равно КПД источника?

Коэффициент полезного действия (КПД) источника показывает, какая часть затраченной (полной) работы источника пошла на пользу или КПД есть отношение полезной работы к затраченной:

Получается, что если добиваться максимальной мощности во внешней цепи, то получим КПД работы всего 50%, то есть половина затраченной мощности источника расходуется бесполезно – переходит в тепло, нагревая источник тока.

Выгоднее брать сопротивление нагрузки больше внутреннего сопротивления источника. Тогда ток в цепи уменьшится, а КПД источника увеличится.

Подумайте над решением следующих задач.

1. ЭДС аккумулятора 2 В, его внутреннее сопротивление 0,4 Ом, сопротивление внешней цепи 1 Ом. Найти разность потенциалов на зажимах аккумулятора и КПД его работы. Ответ: 1,43 В; 71 %.

2. Какую максимальную полезную мощность может выделить аккумулятор с ЭДС 10 В и внутренним сопротивлением 1 Ом? Каково при этом сопротивление внешней цепи? Ответ: 25 Вт; 1 Ом.

3. КПД источника тока, замкнутого на внешнее сопротивление R, равно 60%. Каков будет КПД источника, если внешнее сопротивление увеличить в 6 раз? Ответ: 90%.

Ответ: 7,7 Вт; 12 Вт; 40%; 25%.

Ответ: 2,7 10 4 кг.

К.В. Рулёва

Подписывайтесь на канал. Ставьте лайки. Пишите комментарии. Сообщите друзьям о существовании этого канала.

Предыдущая запись: Решение задач на мощность тока.

Следующая запись: Ещё раз о зарядке и разрядке конденсатора.

Ссылки на занятия до электростатики даны в Занятии 1.

Ссылки на занятия (статьи), начиная с электростатики, даны в конце Занятия 45.

Ссылки на занятия (статьи), начиная с теплового действия тока, даны в конце Занятия 58.

Источник

Мощность по своей сути является скоростью выполнения работы. Чем больше мощность совершаемой работы, тем больше работы выполняется за единицу времени.

Среднее значение мощности — это работа, выполненная за единицу времени.

Величина мощности прямо пропорциональна величине совершённой работы (A) и обратно пропорциональна времени (t), за которое работа была совершена.

Мощность (N) определяют по формуле:

N=At.

Единицей измерения мощности в системе (СИ) является (Ватт) (русское обозначение — (Вт), международное — (W)).

Для определения мощности двигателя автомобилей и других транспортных средств используют исторически более древнюю единицу измерения — лошадиная сила (л.с.), 1 л.с. = 736 Вт.

Пример:

Мощность двигателя автомобиля равна примерно (90 л.с. = 66240 Вт).

Мощность автомобиля или другого транспортного средства можно рассчитать, если известна сила тяги автомобиля (F) и скорость его движения (v).

N=F⋅v

Эту формулу получают, преобразуя основную формулу определения мощности.

Ни одно устройство не способно использовать (100) % от начально подведённой к нему энергии на совершение полезной работы. Поэтому важной характеристикой любого устройства является не только мощность, но и коэффициент полезного действия, который показывает, насколько эффективно используется энергия, подведённая к устройству.  

Пример:

Для того чтобы автомобиль двигался, должны вращаться колёса. А для того чтобы вращались колёса, двигатель должен приводить в движение кривошипно-шатунный механизм (механизм, который возвратно-поступательное движение поршня двигателя преобразует во вращательное движение колёс). При этом приводятся во вращение шестерни и большая часть энергии выделяется в виде тепла в окружающее пространство, в результате чего происходит потеря подводимой энергии. Коэффициент полезного действия двигателя автомобиля находится в пределах (40 — 45) %. Таким образом, получается, что только около (40) % от всего бензина, которым заправляют автомобиль, идёт на совершение необходимой нам полезной работы — перемещение автомобиля.

Если мы заправим в бак автомобиля (20) литров бензина, тогда только (8) литров будут расходоваться на перемещение автомобиля, а (12) литров сгорят без совершения полезной работы.

Коэффициент полезного действия обозначается буквой греческого алфавита («эта») η, он является отношением полезной мощности (N) к полной или общей мощности Nполная.

Для его определения используют формулу: η=NNполная. Поскольку по определению коэффициент полезного действия является отношением мощностей, единицы измерения он не имеет.

Часто его выражают в процентах. Если коэффициент полезного действия выражают в процентах, тогда используют формулу: η=NNполная⋅100%.

Так как мощность является работой, проделанной за единицу времени, тогда коэффициент полезного действия можно выразить как отношение полезной проделанной работы (A) к общей или полной проделанной работе Aполная. В этом случае формула для определения коэффициента полезного действия будет выглядеть так:

η=AAполная⋅100%.

Коэффициент полезного действия всегда меньше (1), или (100) % (η < 1, или η < (100) %).

Источники:

E. Šilters, V. Regusts, A. Cābelis. «Fizika 10. klasei», Lielvārds, 2004, 256 lpp.

(Э. Шилтерс, В. Регустс, А. Цабелис. «Физика для 10 класса», Lielvārds, 2004, 256 стр.)

Источник

В процессе перемещения зарядов внутри замкнутой цепи, источником тока совершается определенная работа. Она может быть полезной и полной. В первом случае источник тока перемещает заряды во внешней цепи, совершая при этом работу, а во втором случае – заряды перемещаются во всей цепи. В этом процессе большое значение имеет КПД источника тока, определяемого, как соотношение внешнего и полного сопротивления цепи. При равенстве внутреннего сопротивления источника и внешнего сопротивления нагрузки, половина всей мощности будет потеряна в самом источнике, а другая половина выделится на нагрузке. В этом случае коэффициент полезного действия составит 0,5 или 50%.

КПД электрической цепи

Рассматриваемый коэффициент полезного действия в первую очередь связан с физическими величинами, характеризующими скорость преобразования или передачи электроэнергии. Среди них на первом месте находится мощность, измеряемая в ваттах. Для ее определения существует несколько формул: P = U x I = U2/R = I2 x R.

В электрических цепях может быть различное значение напряжения и величина заряда, соответственно и выполняемая работа тоже отличается в каждом случае. Очень часто возникает необходимость оценить, с какой скоростью передается или преобразуется электроэнергия. Эта скорость представляет собой электрическую мощность, соответствующую выполненной работе за определенную единицу времени. В виде формулы данный параметр будет выглядеть следующим образом: P=A/∆t. Следовательно, работа отображается как произведение мощности и времени: A=P∙∆t. В качестве единицы измерения работы используется джоуль (Дж).

Для того чтобы определить, насколько эффективно какое-либо устройство, машина электрическая цепь или другая аналогичная система, в отношении мощности и работы используется КПД – коэффициент полезного действия. Данная величина определяется как отношение полезно израсходованной энергии, к общему количеству энергии, поступившей в систему. Обозначается КПД символом η, а математически определяется в виде формулы: η = A/Q x 100% = [Дж]/[Дж] х 100% = [%], в которой А – работа выполненная потребителем, Q – энергия, отданная источником. В соответствии с законом сохранения энергии, значение КПД всегда равно или ниже единицы. Это означает, что полезная работа не может превышать количество энергии, затраченной на ее совершение.

Таким образом, определяются потери мощности в какой-либо системе или устройстве, а также степень их полезности. Например, в проводниках потери мощности образуются, когда электрический ток частично превращается в тепловую энергию. Количество этих потерь зависит от сопротивления проводника, они не являются составной частью полезной работы.

Существует разница, выраженная формулой ∆Q=A-Q, наглядно отображающей потери мощности. Здесь очень хорошо просматривается зависимость между ростом потерь мощности и сопротивлением проводника. Наиболее ярким примером служит лампа накаливания, КПД у которой не превышает 15%. Остальные 85% мощности превращаются в тепловое, то есть в инфракрасное излучение.

Что такое КПД источника тока

Рассмотренный коэффициент полезного действия всей электрической цепи, позволяет лучше понять физическую суть КПД источника тока, формула которого также состоит из различных величин.

В процессе перемещения электрических зарядов по замкнутой электрической цепи, источником тока выполняется определенная работа, которая различается как полезная и полная. Во время совершения полезной работы, источника тока перемещает заряды во внешней цепи. При полной работе, заряды, под действием источника тока, перемещаются уже по всей цепи.

В виде формул они отображаются следующим образом:

  • Полезная работа – Аполез = qU = IUt = I2Rt.
  • Полная работа – Аполн = qε = Iεt = I2(R +r)t.

На основании этого, можно вывести формулы полезной и полной мощности источника тока:

  • Полезная мощность – Рполез = Аполез /t = IU = I2R.
  • Полная мощность – Рполн = Аполн/t = Iε = I2(R + r).

В результате, формула КПД источника тока приобретает следующий вид:

  • η = Аполез/ Аполн = Рполез/ Рполн = U/ε = R/(R + r).

Максимальная полезная мощность достигается при определенном значении сопротивления внешней цепи, в зависимости от характеристик источника тока и нагрузки. Однако, следует обратить внимание на несовместимость максимальной полезной мощности и максимального коэффициента полезного действия.

Исследование мощности и КПД источника тока

Коэффициент полезного действия источника тока зависит от многих факторов, которые следует рассматривать в определенной последовательности.

Для определения величины тока в электрической цепи, в соответствии с законом Ома, существует следующее уравнение: i = E/(R + r), в котором Е является электродвижущей силой источника тока, а r – его внутренним сопротивлением. Это постоянные величины, которые не зависят от переменного сопротивления R. С их помощью можно определить полезную мощность, потребляемую электрической цепью:

  • W1 = i x U = i2 x R. Здесь R является сопротивлением потребителя электроэнергии, i – ток в цепи, определяемый предыдущим уравнением.

Таким образом, значение мощности с использованием конечных переменных будет отображаться в следующем виде: W1 = (E2 x R)/(R + r).

Поскольку сила тока представляет собой промежуточную переменную, то в этом случае функция W1(R) может быть проанализирована на экстремум. С этой целью нужно определить значение R, при котором величина первой производной полезной мощности, связанная с переменным сопротивлением (R) будет равной нулю: dW1/dR = E2 x [(R + r)2 – 2 x R x (R + r)] = E2 x (Ri + r) x (R + r – 2 x R) = E2(r – R) = 0 (R + r)4 (R + r)4 (R + r)3

Из данной формулы можно сделать вывод, что значение производной может быть нулевым лишь при одном условии: сопротивление приемника электроэнергии (R) от источника тока должно достичь величины внутреннего сопротивления самого источника (R => r). В этих условиях значение коэффициента полезного действия η будет определяться как соотношение полезной и полной мощности источника тока – W1/W2. Поскольку в максимальной точке полезной мощности сопротивление потребителя энергии источника тока будет таким же, как и внутреннее сопротивление самого источника тока, в этом случае КПД составит 0,5 или 50%.

Задачи на мощность тока и КПД

Источник

Электрические двигатели имеют высокий коэффициент полезного действия (КПД), но все же он далек от идеальных показателей, к которым продолжают стремиться конструкторы. Все дело в том, что при работе силового агрегата преобразование одного вида энергии в другой проходит с выделение теплоты и неминуемыми потерями. Рассеивание тепловой энергии можно зафиксировать в разных узлах двигателя любого типа. Потери мощности в электродвигателях являются следствием локальных потерь в обмотке, в стальных деталях и при механической работе. Вносят свой вклад, пусть и незначительный, дополнительные потери.

Магнитные потери мощности

При перемагничивании в магнитном поле сердечника якоря электродвигателя происходят магнитные потери. Их величина, состоящая из суммарных потерь вихревых токов и тех, что возникают при перемагничивании, зависят от частоты перемагничивания, значений магнитной индукции спинки и зубцов якоря. Немалую роль играет толщина листов используемой электротехнической стали, качество ее изоляции.

Механические и электрические потери

Механические потери при работе электродвигателя, как и магнитные, относятся к числу постоянных. Они складываются из потерь на трение подшипников, на трение щеток, на вентиляцию двигателя. Минимизировать механические потери позволяет использование современных материалов, эксплуатационные характеристики которых совершенствуются из года в год. В отличие от них электрические потери не являются постоянными и зависят от уровня нагрузки электродвигателя. Чаще всего они возникают вследствие нагрева щеток, щеточного контакта. Падает коэффициент полезного действия (КПД) от потерь в обмотке якоря и цепи возбуждения. Механические и электрические потери вносят основной вклад в изменение эффективности работы двигателя.

Добавочные потери

Добавочные потери мощности в электродвигателях складываются из потерь, возникающих в уравнительных соединениях, из потерь из-за неравномерной индукции в стали якоря при высокой нагрузке. Вносят свой вклад в общую сумму добавочных потерь вихревые токи, а также потери в полюсных наконечниках. Точно определить все эти значения довольно сложно, поэтому их сумму принимают обычно равной в пределах 0,5-1%. Эти цифры используют при расчете общих потерь для определения КПД электродвигателя.

КПД и его зависимость от нагрузки

Коэффициент полезного действия (КПД) электрического двигателя это отношение полезной мощности силового агрегата к мощности потребляемой. Этот показатель у двигателей, мощностью до 100 кВт находится в пределах от 0,75 до 0,9. для более мощных силовых агрегатов КПД существенно выше: 0,9-0,97. Определив суммарные потери мощности в электродвигателях можно достаточно точно вычислить коэффициент полезного действия любого силового агрегата. Этот метод определения КПД называется косвенным и он может применяться для машин различной мощности. Для маломощных силовых агрегатов часто используют метод непосредственной нагрузки, заключающийся в измерениях потребляемой двигателем мощности.

КПД электрического двигателя не является величиной постоянной, своего максимума он достигает при нагрузках около 80% мощности. Достигает он пикового значения быстро и уверенно, но после своего максимума начинает медленно уменьшаться. Это связывают с возрастанием электрических потерь при нагрузках, более 80% от номинальной мощности. Падение коэффициента полезного действия не велико, что позволяет говорить о высоких показателях эффективности электродвигателей в широком диапазоне мощностей.

Источник