Мощность и коэффициент полезного действия источника электрической энергии
Пишу для школьников (для лучшего понимания ими основ физики). Материал излагаю в соответствии с признанной ныне научной трактовкой физических явлений. Критике существующей теории и глубоким теоретическим рассуждениям здесь не место.
На рисунке изображена замкнутая электрическая цепь, состоящая из источника постоянного тока и переменной нагрузки во внешней части цепи.
Источником постоянного тока может быть электрическая машина, о которой говорится в статье “Искровой разряд”; батарея гальванических элементов, аккумулятор и др.
Роль источника тока заключается в создании (генерировании) электрической энергии: в разделении положительных и отрицательных зарядов; в создании и поддерживании разности потенциалов между конечными точками цепи, в которую включена нагрузка (электрическая лампочка, электроплитка. электродвигатель и т. д.).
При прохождении тока через нагрузку электрическая энергия превращается в другие виды энергии :тепловую (в электроплитке); в тепло и свет (в электрической лампе); в механическую энергию (в электродвигателе).
Превращение энергии из одного вида в другой всегда связано с работой.
При прохождении тока по проводнику совершается работа, её совершают электрические силы (или электрическое поле). Кратко эту работу называют работой тока.
Рассматривая участок цепи, по которому проходит ток, получим следующее выражение для работы тока:
Работа тока равна произведению напряжения между концами участка на протекающий ток и время его протекания.
В случае, если участок цепи однородный (не содержит источника тока), то
тогда получим ещё две формулы для работы тока:
Если ток проходит через неподвижный проводник, то единственным результатом работы тока является его нагревание. Тогда количество выделившейся теплоты
Это запись закона Джоуля – Ленца.
Если кроме нагревания ток совершает ещё механическую работу, например, приводя в действие электродвигатель (мотор), то работа
лишь частично переходит в тепло.
В этом случае работа тока больше количества выделившейся теплоты, но закон Джоуля – Ленца выполняется.
Работа, совершаемая током в единицу времени, называется мощностью тока:
Единицей мощности тока является 1 Вт:
1 Вт – мощность выделяемая током 1 А в проводнике, между концами которого поддерживается напряжение 1 В.
Основная формула мощности для участка цепи:
Мощность постоянного тока на любом участке цепи выражается произведением силы тока на напряжение между концами участка цепи.
Так как для однородного участка цепи
то мощность можно найти ещё по формулам:
Обычно говорят не о работе, а о потребляемой из сети некоторым прибором (электроплитка, лампочки и др.) или двигателем (мотором) мощности электрического тока. Говоря о мощности (например, электродвигателя), отмечают, что работа двигателя совершается за счёт тока.
На приборах часто отмечается потребляемая ими мощность – мощность, необходимая для нормальной работы этого прибора.
Согласно закону сохранения энергии, для замкнутой электрической цепи можно записать:
Здесь
есть полная или затраченная работа, совершаемая сторонними силами, существующими внутри источника, по переносу заряда по цепи.
В гальваническом элементе такими силами являются силы химической реакции.
– это полезная работа, совершаемая электрическим полем при прохождении тока через нагрузку;
это работа, совершаемая внутри источника, по преодолению его внутреннего сопротивления.
Так как работа, совершённая за единицу времени, есть мощность, то из уравнения (1) получим выражение для мощности:
Здесь
есть полная или затраченная мощность, это мощность развиваемая источником тока.
это мощность выделяемая внутри источника тока
это полезная мощность, создаваемая во внешней части цепи (на нагрузке).
Здесь U – напряжение на зажимах источника при замкнутой цепи (при разомкнутой цепи оно равно ЭДС источника).
Так как для однородного участка цепи напряжение равно произведению тока на сопротивление, то полезную мощность можно найти ещё по следующей формуле:
Ток в замкнутой цепи
тогда формулу для полезной мощности можно записать так:
Проанализируем зависимость полезной мощности от сопротивления нагрузки.
При коротком замыкании вся развиваемая источником мощность выделяется на его внутреннем сопротивлении в виде теплоты.
Таким образом, полезная мощность, развиваемая во внешней цепи, достигает максимального значения тогда, когда сопротивление нагрузки равно внутреннему сопротивлению источника.
На следующем рисунке показан график зависимости полезной мощности от сопротивления нагрузки.
Получена формула для нахождения максимальной полезной мощности
При этом ток в цепи в два раза меньше тока короткого замыкания:
Но чему при этом будет равно КПД источника?
Коэффициент полезного действия (КПД) источника показывает, какая часть затраченной (полной) работы источника пошла на пользу или КПД есть отношение полезной работы к затраченной:
Получается, что если добиваться максимальной мощности во внешней цепи, то получим КПД работы всего 50%, то есть половина затраченной мощности источника расходуется бесполезно – переходит в тепло, нагревая источник тока.
Выгоднее брать сопротивление нагрузки больше внутреннего сопротивления источника. Тогда ток в цепи уменьшится, а КПД источника увеличится.
Подумайте над решением следующих задач.
1. ЭДС аккумулятора 2 В, его внутреннее сопротивление 0,4 Ом, сопротивление внешней цепи 1 Ом. Найти разность потенциалов на зажимах аккумулятора и КПД его работы. Ответ: 1,43 В; 71 %.
2. Какую максимальную полезную мощность может выделить аккумулятор с ЭДС 10 В и внутренним сопротивлением 1 Ом? Каково при этом сопротивление внешней цепи? Ответ: 25 Вт; 1 Ом.
3. КПД источника тока, замкнутого на внешнее сопротивление R, равно 60%. Каков будет КПД источника, если внешнее сопротивление увеличить в 6 раз? Ответ: 90%.
Ответ: 7,7 Вт; 12 Вт; 40%; 25%.
Ответ: 2,7 10 4 кг.
К.В. Рулёва
Подписывайтесь на канал. Ставьте лайки. Пишите комментарии. Сообщите друзьям о существовании этого канала.
Предыдущая запись: Решение задач на мощность тока.
Следующая запись: Ещё раз о зарядке и разрядке конденсатора.
Ссылки на занятия до электростатики даны в Занятии 1.
Ссылки на занятия (статьи), начиная с электростатики, даны в конце Занятия 45.
Ссылки на занятия (статьи), начиная с теплового действия тока, даны в конце Занятия 58.
Для работы электронных и электрических устройств необходимо подключать их к источникам питания. Источники питания могут быть как стационарные, так и автономные. В качестве питающих устройств используются гальванические элементы или преобразователи электроэнергии. И те, и другие являются источниками тока или напряжения.
Источники электрического тока и напряжения
Что такое источник тока
Это устройство или элемент, в общем понимании – двухполюсник, у которого проходящий через него ток не зависит от величины напряжения на полюсах. Основные характеристики источника тока (ИТ):
- величина;
- внутренняя проводимость (импеданс).
Внутреннее сопротивление такого двухполюсника очень мало. У идеального источника (ИИТ) оно приближается к нулю.
Графическое обозначение и вольт-амперная характеристика (ВАХ) ИТ
Генераторы движения электронов могут быть как независимыми, так и зависимыми.
Первые представляют собой идеальный двухполюсник, с двумя зажимами. У них ток, движущийся от одного зажима к другому, не зависит от формы и величины разности потенциалов на зажимах. Его изменения происходят по своим законам.
Второй тип ИТ – идеальный двухполюсник, с двумя зажимами, у которого движение зарядов от одного зажима к другому зависит от формы и величины напряжения на этих зажимах.
Существует управляемый зависимый ИТ. Он представляет собой идеальный двухполюсник, имеющий 2 зажима на входе и 2 зажима на выходе. Его особенность в том, что выходное значение тока на выходе зависит от его величины на входе. В таком ИТ происходит усиление мощности. Изменяя нулевое значение мощности на его входе, управляют величину мощности на выходных зажимах.
Информация. Управление производителем энергии может осуществляться напряжением (ИТУН) или током (ИТУТ). Одни находят применение для полевых триодов и электровакуумных ламп, вторые – для транзисторов биполярного типа.
В реальности генераторы тока имеют определённые ограничения по напряжению. Они далеки от идеальных ИТ и создают движение электричества в таком интервале напряжений, где их верхняя граница зависит от Uпит ИТ. Следовательно, у реального источника тока есть существенные пределы по нагрузке.
КПД электрической цепи
Выполняя продвижения зарядов через замкнутую цепь, двухполюсник проделывает некоторую работу. Когда генератор двигает заряды по внешнему контуру цепи, то это полезная работа. Когда ИТ продвигает электрические носители по всей цепи, говорят о полной работе.
Внимание! В этой цепочке перемещения зарядов особое значение имеет КПД (коэффициент полезного действия) источника. Он равен соотношению сопротивлений внешней цепи и полному сопротивлению цепи.
Обращая внимание на КПД электроцепи, нужно отметить, что он напрямую зависит от физических величин, определяющих скорость передачи или трансформации электрической энергии. Одной из таких величин является мощность Р (Вт).
Формулы мощности:
P = U * I = U2/R = I2 * R,
где:
- U – напряжение на нагрузке, В;
- I – ток, А;
- R – сопротивление нагрузки, Ом.
Для разных цепей значения напряжения и сила тока различаются, следовательно, производимая ими работа будет разной. Когда предстоит оценить скорость передачи и преобразования электрического тока, то обращают внимание на Р. Она соответствует работе, проделанной за единицу времени:
P = A/∆t,
где:
- P – мощность, Вт;
- A – работа, Дж;
- ∆t – временной интервал, с.
Исходя из этой формулы, чтобы найти работу А, нужно умножить Р на время:
A=P∙∆t
Чтобы найти КПД (η) электроцепи, нужно найти отношение полезно потраченной энергии к количеству всей энергии, поданной в цепь. Формула для расчёта:
η = A/Q *100%,
где:
- А – проделанная потребителем работа, Дж;
- Q – количество энергии, взятой от источника, Дж.
Важно! КПД не может быть выше единицы. В основном он или равен ей, или меньше её. Этому причина – Закон сохранения энергии. Согласно ему, полезная совершённая работа никогда не превысит затраты энергии, необходимые для её выполнения.
Наглядно это можно объяснить на примере электрической цепи, в которую включен проводник, имеющий определённое сопротивление. При прохождении электричества через цепь часть энергии будет рассеиваться на проводнике, превращаясь в тепло и нагревая его. Потери мощности будут зависеть от величины этого сопротивления.
КПД электрической цепи
Что такое КПД ИТ
Когда речь идёт о кпд источника тока, также рассматривают полезную и полную работу, совершаемую двухполюсником. Перемещая электроны во внешней цепи, он выполняет полезную работу, двигая их по всей цепи, включая и свою внутреннюю, он производит полную работу.
В виде формул это выглядит так:
- А полезн. = q*U = I*U*t = I2*R*t;
- А полн. = q*ε = I* ε*t = I2*(R+r)*t.
где:
- q – количество энергии, Дж;
- U – напряжение, В;
- ε – ЭДС, В;
- I – ток, А;
- R – сопротивление нагрузки, Ом;
- r – импеданс источника, Ом;
- t – время, за которое совершается работа, с.
С учётом этого можно выразить мощности двухполюсника:
- Р полезн. = А полезн./t = I*U = I2*R;
- P полн. = А полн./t = I*ε = I2*(R+r).
Формула кпд источников тока имеет вид:
η = Р полезн./P полн.= U/ε = R/ R+r.
Исследование мощности и КПД генератора тока
Максимальная полезная Pmax и максимальный КПДmax – несовместимые понятия. Нельзя добиться максимального КПД источника при максимальной мощности. Это обусловлено тем, что Р, отдаваемая двухполюсником, достигнет своего максимального значения только при условии согласования сопротивления нагрузки и внутреннего импеданса ИТ:
R = r.
В этом случае КПД источника будет:
η = R/ R+r = r/ r+r = 1/2, что составляет всего 50%.
Для согласования двухполюсника и нагрузки применяют электронные схемы или согласующие блоки, для того чтобы добиться максимального отбора мощности от источника.
Мощность ИТ и внутреннее сопротивление
Можно собрать последовательную схему, в которую войдут гальванический двухполюсник и сопротивление нагрузки. Двухполюсник, имеющий внутренний импеданс r и ЭДС – Е, отдаёт на внешнюю нагрузку R ток I. Задача цепи – питание электричеством активной нагрузки, выполняющей полезную работу. В качестве нагрузки может быть применена лампочка или обогреватель.
Простая схема для исследования зависимости Рполезн. от R
Рассматривая эту цепь, можно определиться с зависимостью полезной мощности от величины сопротивления. Для начала находят R-эквивалентное всей цепи.
Оно выглядит так:
Rэкв. = R + r.
Движение электричества в цепи находится по формуле:
I = E/(R + r).
В таком случае Р ЭДС на выходе составит Рвых. = E*I = E²/(R + r).
Далее можно найти Р, рассеиваемую при нагреве генератора из-за внутреннего сопротивления:
Pr = I² * r = E² * r/(R + r)².
На следующем этапе определяются с мощностью, отбираемой нагрузкой:
PR = I² * R = E² * R/(R + r)².
Общая Р на выходе двухполюсника будет равна сумме:
Рвых. = Рr + PR.
Это значит, что потери энергии изначально происходят при рассеивании на импедансе (внутреннем сопротивлении) двухполюсника.
Далее, чтобы увидеть, при какой величине нагрузки достигается максимальная величина полезной мощности Рполезн., строят график.
При его рассмотрении видно, что самое большое значение мощности – в точке, где R и r сравнялись. Это точка согласования сопротивлений генератора и нагрузки.
Внимание! Когда R > r, то ток, возникающий в цепи, мал для передачи энергии нагрузке с достаточной скоростью. При R < r значительная доля энергии превращается в тепло в самом двухполюснике.
Наиболее наглядный пример согласования можно увидеть в радиотехнике при согласовании выходного сопротивления УНЧ (усилителя низкой частоты) и звуковых динамиков. На выходе усилителя сопротивление находится в пределах от 4 до 8 Ом, в то время как Rвх динамика составляет 8 Ом. Устройство позволяет подключить к своему выходному каскаду, как один динамик на 8 Ом, так и параллельно два по 4 Ома. И в том, и в другом случае УНЧ будет работать в заданном режиме, без потерь мощности.
В процессе разработок тех или иных реальных источников тока пользуются представлением его в виде эквивалентного блока. В его состав входят два компонента, с которыми ведётся работа: это идеальный источник и его импеданс.
Видео
В процессе перемещения зарядов внутри замкнутой цепи, источником тока совершается определенная работа. Она может быть полезной и полной. В первом случае источник тока перемещает заряды во внешней цепи, совершая при этом работу, а во втором случае – заряды перемещаются во всей цепи. В этом процессе большое значение имеет КПД источника тока, определяемого, как соотношение внешнего и полного сопротивления цепи. При равенстве внутреннего сопротивления источника и внешнего сопротивления нагрузки, половина всей мощности будет потеряна в самом источнике, а другая половина выделится на нагрузке. В этом случае коэффициент полезного действия составит 0,5 или 50%.
КПД электрической цепи
Рассматриваемый коэффициент полезного действия в первую очередь связан с физическими величинами, характеризующими скорость преобразования или передачи электроэнергии. Среди них на первом месте находится мощность, измеряемая в ваттах. Для ее определения существует несколько формул: P = U x I = U2/R = I2 x R.
В электрических цепях может быть различное значение напряжения и величина заряда, соответственно и выполняемая работа тоже отличается в каждом случае. Очень часто возникает необходимость оценить, с какой скоростью передается или преобразуется электроэнергия. Эта скорость представляет собой электрическую мощность, соответствующую выполненной работе за определенную единицу времени. В виде формулы данный параметр будет выглядеть следующим образом: P=A/∆t. Следовательно, работа отображается как произведение мощности и времени: A=P∙∆t. В качестве единицы измерения работы используется джоуль (Дж).
Для того чтобы определить, насколько эффективно какое-либо устройство, машина электрическая цепь или другая аналогичная система, в отношении мощности и работы используется КПД – коэффициент полезного действия. Данная величина определяется как отношение полезно израсходованной энергии, к общему количеству энергии, поступившей в систему. Обозначается КПД символом η, а математически определяется в виде формулы: η = A/Q x 100% = [Дж]/[Дж] х 100% = [%], в которой А – работа выполненная потребителем, Q – энергия, отданная источником. В соответствии с законом сохранения энергии, значение КПД всегда равно или ниже единицы. Это означает, что полезная работа не может превышать количество энергии, затраченной на ее совершение.
Таким образом, определяются потери мощности в какой-либо системе или устройстве, а также степень их полезности. Например, в проводниках потери мощности образуются, когда электрический ток частично превращается в тепловую энергию. Количество этих потерь зависит от сопротивления проводника, они не являются составной частью полезной работы.
Существует разница, выраженная формулой ∆Q=A-Q, наглядно отображающей потери мощности. Здесь очень хорошо просматривается зависимость между ростом потерь мощности и сопротивлением проводника. Наиболее ярким примером служит лампа накаливания, КПД у которой не превышает 15%. Остальные 85% мощности превращаются в тепловое, то есть в инфракрасное излучение.
Что такое КПД источника тока
Рассмотренный коэффициент полезного действия всей электрической цепи, позволяет лучше понять физическую суть КПД источника тока, формула которого также состоит из различных величин.
В процессе перемещения электрических зарядов по замкнутой электрической цепи, источником тока выполняется определенная работа, которая различается как полезная и полная. Во время совершения полезной работы, источника тока перемещает заряды во внешней цепи. При полной работе, заряды, под действием источника тока, перемещаются уже по всей цепи.
В виде формул они отображаются следующим образом:
- Полезная работа – Аполез = qU = IUt = I2Rt.
- Полная работа – Аполн = qε = Iεt = I2(R +r)t.
На основании этого, можно вывести формулы полезной и полной мощности источника тока:
- Полезная мощность – Рполез = Аполез /t = IU = I2R.
- Полная мощность – Рполн = Аполн/t = Iε = I2(R + r).
В результате, формула КПД источника тока приобретает следующий вид:
- η = Аполез/ Аполн = Рполез/ Рполн = U/ε = R/(R + r).
Максимальная полезная мощность достигается при определенном значении сопротивления внешней цепи, в зависимости от характеристик источника тока и нагрузки. Однако, следует обратить внимание на несовместимость максимальной полезной мощности и максимального коэффициента полезного действия.
Исследование мощности и КПД источника тока
Коэффициент полезного действия источника тока зависит от многих факторов, которые следует рассматривать в определенной последовательности.
Для определения величины тока в электрической цепи, в соответствии с законом Ома, существует следующее уравнение: i = E/(R + r), в котором Е является электродвижущей силой источника тока, а r – его внутренним сопротивлением. Это постоянные величины, которые не зависят от переменного сопротивления R. С их помощью можно определить полезную мощность, потребляемую электрической цепью:
- W1 = i x U = i2 x R. Здесь R является сопротивлением потребителя электроэнергии, i – ток в цепи, определяемый предыдущим уравнением.
Таким образом, значение мощности с использованием конечных переменных будет отображаться в следующем виде: W1 = (E2 x R)/(R + r).
Поскольку сила тока представляет собой промежуточную переменную, то в этом случае функция W1(R) может быть проанализирована на экстремум. С этой целью нужно определить значение R, при котором величина первой производной полезной мощности, связанная с переменным сопротивлением (R) будет равной нулю: dW1/dR = E2 x [(R + r)2 – 2 x R x (R + r)] = E2 x (Ri + r) x (R + r – 2 x R) = E2(r – R) = 0 (R + r)4 (R + r)4 (R + r)3
Из данной формулы можно сделать вывод, что значение производной может быть нулевым лишь при одном условии: сопротивление приемника электроэнергии (R) от источника тока должно достичь величины внутреннего сопротивления самого источника (R => r). В этих условиях значение коэффициента полезного действия η будет определяться как соотношение полезной и полной мощности источника тока – W1/W2. Поскольку в максимальной точке полезной мощности сопротивление потребителя энергии источника тока будет таким же, как и внутреннее сопротивление самого источника тока, в этом случае КПД составит 0,5 или 50%.