Методы разведки месторождений твердых полезных ископаемых
Добыче полезных ископаемых предшествует колоссальный труд геологоразведочных экспедиций, исследующих недра в любой точке планеты, зачастую в труднодоступной местности и в условиях сурового климата. Принятию решений любой сырьевой компании об освоении месторождений предшествуют не столько расчёты экономистов или мнения акционеров, сколько окончательный вердикт геологов.
Цели и основные направления геологоразведки
Геологоразведочные работы — это мероприятия, направленные на выявление и подготовку к освоению в промышленных масштабах месторождений полезных ископаемых. В процессе выполнения таких работ в том числе изучается размещение пластов ископаемых, условия их образования и состав. Кроме того, изучаются компоненты, сопровождающие залежи полезных ископаемых, в том числе редкие металлы, попутный газ, сера и т. д., выясняется возможность их извлечения или же утилизации.
Геологоразведка сопряжена с анализом условий природы и климата в районах работ, социально-экономических предпосылок для реализации конкретных проектов. Она предусматривает изучение возможных способов добычи ископаемых при условии рациональной эксплуатации блоков и минимизации возможного вреда окружающей среде. Результатами осуществления работ по геологоразведке является расчёт и утверждение запасов полезных ископаемых, оценка их количественных ресурсов, в том числе прогнозная.
В случае, если залежи полезных ископаемых получают положительную оценку в результате поисково-оценочных мероприятий, проводится непосредственно разведка открытого месторождения. В её ходе выясняются геологическое строение участка, размеры, условия залегания и пространственное расположение залежей. Кроме того, вычисляются качество и количество ископаемых, технологические факторы, которые будут определять условия эксплуатации блока.
Сейсмическая, электрическая и гравитационная разведка
Одним из самых эффективных и популярных методов первичных геологических исследований месторождений, в основном залежей нефти и газа, является сейсморазведка. Её принцип базируется на регистрации сейсмических волн, которые создаются искусственным путём при помощи специального источника волн, в роли которого обычно выступает взрывчатка. Тротил размещается в неглубоких скважинах. Для инициирования как продолжительных, так и коротких импульсных колебаний могут применяться автомобильные вибраторы.
Вибрационная установка Nomad-65
С помощью источника в породе создаётся избыточное давление и распространяются колебания периодического типа. Эти волны наталкиваются на слои с разными показателями упругости, после чего меняют не только направление, но и амплитуду, а также создают новые колебания. По пути следования волн размещаются датчики-приёмники, которые фиксируют колебания и передают операторам полученные сигналы. Сейсмокомплексы представляют собой типовые системы, в состав которых входит один источник и до 300 приёмников, расположенных через 25–50 метров друг от друга. Если оператор правильно выбирает схему, это позволяет исследователям получать необходимую информацию без избыточных затрат.
Сейсмическая разведка: 1 — передающая система; 2 — приёмная система; 3 — сейсмоприёмники; 4 — сейсмическая волна; 5 — отражённая сейсмическая волна; 6 — нефтеносный пласт
В зависимости от того, как расположены друг относительно друга источники и приёмники колебаний, различают такие виды сейсморазведки:
- совмещённые источник и приёмник — 1D;
- расположение источника и приёмников на одной линии — 2D;
- расстановка приёмников на параллельных линиях по площади участка — 3D;
- периодическое повторение 3D-разведки при разработке месторождения — 4D.
После регистрации и записи колебаний проводится их анализ с целью определения особенностей распространения и свойств волн. В частности, извлекается геологическая информация о границах сейсмики. Полученные сейсмограммы требуют серьёзной обработки, поскольку они в условиях полевых работ обычно включают помехи. Что касается полезных волн, то они зачастую сложны для интерпретации. Для анализа данных применяется современная компьютерная техника.
Сигналы усиливаются, фильтруются, очищаются от нежелательных колебаний и конвертируются в цифровой формат, после чего поступают на сейсмостанцию для наблюдений. По результатам обработки геологи получают материал для дальнейшего толкования. Если на полученных геологических разрезах идентифицируются аномальные зоны распространения волн, то, как правило, это является свидетельством наличия залежей полезных ископаемых.
При наличии значительного преимущества — высокой точности измерений, сейсморазведка обладает рядом существенных недостатков. В частности, геологи не в состоянии определить качество залежей полезных ископаемых, не могут применять сейсморазведку на сложном рельефе местности. Кроме того, при наличии солевых горизонтов такая разведка неэффективна. Применение взрывчатки, в свою очередь, может негативно влиять на экосистему исследуемого района.
Закладка взрывного источника сейсмических колебаний
Ещё одним популярным видом геологоразведки является разведка электрическая. Данное направление включает способы исследования недр, которые применяются для изучения как верхних слоёв породы, так и для глубинной разведки. В свою очередь, они делятся на две большие группы.
Методы электрической разведки:
- Индукционные методы.
- Методы сопротивлений.
Исследование недр индукционными методами предусматривает создание электромагнитного поля за счёт эффекта магнитной индукции под влиянием переменного электрического поля или же магнитного поля. При обладании информацией о параметрах источника поля оператор может свободно измерить магнитные и электрические составляющие индуцированного поля и, следовательно, восстановить параметры среды их возникновения.
Магниторазведка
В свою очередь, методы сопротивлений основываются на пропускании через грунт электродов с постоянным током. Измеряется напряжение, которое вызвано данным током, поступающее от первой ко второй группе электродов. При наличии информации о напряжении и силе тока можно вычислить показатель сопротивления среды, через которую пропускается электричество. Благодаря конфигурации электродов точно устанавливается участок пространства, в которой меняется сопротивление.
Принципиальная схема электроразведки методами сопротивлений: 1 — питающая линия; 2 — измерительная линия; 3 — измерительные заземления; 4 — питающие заземления; 5 — область исследования; 6 — линии тока
Электроразведочная станция для вертикального электрического зондирования
Поиск возможных залежей полезных ископаемых производится в том числе способом гравитационной разведки. Он основан на принципе измерения показателя ускорения свободного падения. Последнее зависит не только от параметров планеты в целом, но и от аномальной плотности пород в районах поисков. Таким образом, неоднородность плотности подземных горизонтов легко вычисляется в гравитационном поле.
Гравиразведка
Поиск залежей твёрдых ископаемых
Хотя конкретные способы разведки месторождений зависят от возможности применения определённых технических средств в конкретных условиях, для выявления залежей твёрдых полезных ископаемых (руд, минералов и т. д.) соответствующие мероприятия, как правило, проводятся в шесть типовых стадий:
1. Геофизические и геолого-съёмочные работы. Данный этап включает исследование крупных геологических структур, в которых, вероятно, присутствуют полезные ископаемые. Перспективные площадки по завершению данной стадии передаются на специализированные поисковые работы.
2. Поиск месторождений. Геологи работают над обнаружением запасов определённых видов полезных ископаемых. Работы осуществляются в несколько промежуточных этапов. Вначале проводится поиск общего характера с целью выявления границ зоны потенциального размещения ископаемых. После этого обустраиваются горные выработки или скважины для выполнения структурно-геологических исследований. По результатам оценивается потенциальное промышленное значение месторождений. Если исследования оказались продуктивными, в этом случае осуществляется подсчёт ресурсов в категории C2. Составляются прогнозы добычи в количественном плане, а также разрабатывается технико-экономическое обоснование (ТЭО) продолжения геологоразведки.
3. Предварительная разведка. Геологи определяют промышленное значение участка, параметры месторождения, технологические свойства и размеры формаций полезных ископаемых, условия залегания. Составляется предварительная характеристика условий освоения блока. Результатами этой работы являются расчёт запасов не только в категории C2, но и C1, а также ТЭО на проведение детальной разведки. На этапе предварительной разведки применяется бурение (глубокое, колонковое или ударно-канатное). При изучении месторождений цветных металлов обустраиваются штольни, небольшие шахты, шурфы с целью отбора проб.
4. Детальная разведка. Данный этап работ проводится исключительно на участках с доказанной промышленной ценностью запасов. Осуществляется дополнительный подсчёт запасов в категориях A и B. По завершению этого этапа должны быть собраны данные, достаточные для начала промышленной эксплуатации месторождения согласно требованиям к изученности исследуемой зоны, в соответствии с классификацией запасов и прогнозными ресурсами.
5. Доразведка. Проводится на участках, которые были в недостаточной степени изучены на предыдущих этапах работы. Кроме того, она осуществляется в пределах флангов, обособленных участков, в глубоких горизонтах горных отводов. На этой стадии проводится последовательный перевод ресурсов из категорий C1 и C2 в более высокие классы, подсчитываются новые выявленные запасы. На ряде объектов при этом строятся глубокие шахты как разведочного, так и эксплуатационно-разведочного назначения.
6. Эксплуатационная разведка. Такой вид разведки проводится одновременно с проходческой работой, направленной на подготовку выработок. Мероприятия по разведке реализуются до момента начала очистных работ с целью обеспечения добычи на текущем этапе, а именно для уточнения информации о залежах, полученной на стадиях детальной разведки. Речь идёт о данных относительно качества, условий залегания, строения и морфологии пластов. На этапе эксплуатационной разведки проходка вертикальных, горизонтальных и наклонных выработок является основным методом работ. Кроме того, возможно обустройство перфораторных — безкерновых — или же колонковых скважин для получения керна.
Особенности разведки нефтегазовых месторождений
Специфика геологоразведки нефтегазовых месторождений обусловлена особенностями залегания и природными свойствами этих полезных ископаемых. Отличительной чертой нефти и газа является то, что их залежи находятся обычно в одних и тех же районах. Газ может быть как растворён в нефти, так и образовывать газовые шапки в верхней части пространства, занимаемого «чёрным золотом».
Накопление углеводородного сырья происходит в осадочных оболочках планеты. В общей сложности в мире выявлено порядка шести сотен нефтегазоносных бассейнов. Нефть и газ находятся на глубинах от одного до нескольких километров и распределены по микроскопическим пустотам. Около 85% запасов сконцентрированы в алевритовых песчаных породах с глиняной прослойкой, остальные ресурсы — в породах карбонатного типа. Огромны запасы шельфовых месторождений, однако степень их изученности крайне мала. Пронедра писали ранее, что, по данным Минприроды, более 90% площади арктического шельфа не разведаны.
Геологические экспедиции, которые занимаются изучением нефтегазовых месторождений, выполняют комплекс работ по исследованию структуры блоков, выделению продуктивных пластов, вычислению предполагаемых дебитов нефти, газа и конденсата, давления в залежах. Все эти данные используются для составления проектов эксплуатационных работ, а также для расчётных обоснований промышленной разработки участков.
Стартует геологоразведка по стандартной схеме — со съёмки и составления геологических карт. В дальнейшем применяется гравитационная разведка. Выявление запасов по данной методике обусловлено отличительной особенность пород, насыщенных нефтью и газом — их плотность меньше, соответственно, и меньшим будет ускорение свободного падения. Нефтегазовые ресурсы выявляются в том числе с применением специфической аэромагнитной разведки, направленной на выявление антиклиналей — геологических ловушек для углеводородов мигрирующего характера на глубинах до семи километров.
Аэромагнитная съёмка выполняется с помощью магнитометров, расположенных в хвостовом коке самолёта
Особенностью же проведения сейсморазведки является то, что такой вид исследования при поиске нефтегазовых запасов осуществляется не только для выявления залежей, но и с целью определения оптимальных мест для бурения скважин разведочного назначения. Одним из эффективных методов обнаружения ресурсов «чёрного золота» и «голубого топлива» является низкочастотное сейсмическое зондирование. Данный способ основан на анализе аномального изменения спектра естественного сейсмического фона в районе размещения залежей на частотах до 10 герц.
Оборудование для сейсморазведки
Нефть и газ также выявляются при помощи методики геохимической разведки. Геологи анализируют состав подземных вод на предмет содержания органических компонентов и газов. Рост концентрации таких элементов в единице объёма пробы воды может указывать на близость пласта. Тем не менее, самым достоверным и эффективным способом разведки углеводородов в настоящее время является непосредственное бурение скважины для выявления степени достаточности их объёмов для промышленного освоения месторождения. В среднем только в трети случаев после бурения обнаруживаются такие запасы.
Бурение разведочной скважины «Шахринав-1п», Таджикистан
В современной России геологоразведка нефтегазовых ресурсов производится не только с целью немедленной разработки конкретных блоков, но и для общего прироста количества углеводородов в соответствии с требованиями Энергетической стратегии, рассчитанной до 2020 года. Напомним, что, по мнению Владимира Путина, геологоразведка крайне важна для экономики России. Открытие и изучение новых месторождений — это работа на перспективу, поскольку выявленные ресурсы фактически являются сырьевым вкладом в будущее страны.
Разведка месторождений — сложный и многообразный научно-производственный процесс изучения с экономическим подходом, в котором используются те же методы, что и при поисках, но с большей детальностью и на более высоком качественном и технологическом уровнях. Поэтому основными методами разведки следует считать:
- — детальное геологическое картирование;
- — линейные подсечения тел полезных ископаемых системами буровых скважин и горных выработок;
- — геофизические исследования в горных выработках и скважинах;
- — геохимические и минералогические исследования;
- — инженерно-геологические;
- — геоэкологические исследования.
Отдельные виды исследований, проводимые при геолого-разведочных работах, можно отнести к дополнительным методам разведки. К ним относятся опробование разведочных выработок и скважин, построение разрезов и погоризонгальных планов по разведочным линейным подссчсниям, гак называемое графическое моделирование, а также оценочные сопоставления геолого-разведочных данных.
Детальное геологическое картирование выполняется на инструментальной графической основе: топографических планах поверхности в масштабе от 1 : 10 000 до 1 : 500 и маркшейдерских погоризонтальных планах масштаба 1 : 1000 и 1 : 500. Привязка обнажений, разведочных скважин и выработок на поверхности осуществляется с помощью теодолитных ходов и геометрического нивелирования, а пунктов наблюдений в подземных горных выработках — к маркшейдерским точкам теодолитных и вертикальной съемок. Составление детальных геологических карт, соответствующих указанному масштабу графической основы, приходится в основном на стадии предварительной разведки.
На геологическую карту наносят маркирующие горизонты и рудоносные формации пород, контуры рудных тел, элементы тектонических дислокаций, зоны гидротермальных метасоматических изменений пород. Рабочий вариант карты должен быть составлен на начальном этапе предварительной разведки, а затем дополняться и уточняться.
На последующих стадиях разведки проводят более детальные геологические съемки на базе маркшейдерских планов и составляют погоризонтальные геологические планы.
Линейные подсечения тел полезных ископаемых осуществляются либо разведочными системами буровых скважин, либо системами горно-разведочных выработок, либо комбинированными горнобуровыми системами. Ценной для разведки является геологическая и другая информация, получаемая в процессе проходки разведочных выработок и бурения скважин, а также они имеют определенное техническое назначение.
Число необходимых линейных подсечений определяется размерами тел и изменчивостью основных параметров, используемых в подсчете запасов. Оно должно быть оптимальным, обеспечивающим выполнение задач каждой стадии и соблюдение принципов разведки.
Геофизические исследования в скважинах и горных выработках являются универсальными по комплексу решаемых задач и высокоэффективными методами, применяемыми на всех разведочных стадиях. Они используются для корреляции геологических неоднородностей, в том числе рудных подсечений между разведочными выработками и скважинами, определения контуров продуктивных залежей в межскважинном пространстве, качества полезных ископаемых и других параметров для подсчета запасов и оценки прогнозных ресурсов.
Широко распространены и имеют важное значение геофизические исследования в скважинах, включающие каротаж и обычно сопровождающие его контрольные измерения за техническим состоянием скважин.
Каротаж основан на воздействии локальных естественных и искусственно вызванных физических полей внутри скважин на специальный зонд, в датчиках которого возникают сигналы, передающиеся по каротажному кабелю к регистрационным и обрабатывающим наземным приборам. Локальные естественные физические поля являются производными петрофизических свойств горных пород и руд, формы тел и структурных особенностей. Природа этих полей различная. Как видно на рис 4.2, для регистрации параметров электрического поля используют методы самопроизвольной поляризации (ПС) и кажущихся сопротивлений (КС). Радиоактивность пород в разрезе скважины
Рис. 4.2. Геофизические исследования (каротажные диаграммы) в разведочных скважинах:
- 1 — песчаники; 2 — известняки; 3 — алевролиты и аргиллиты;
- 4 — углистые породы; 5 — каменный уголь
фиксирует гамма-каротаж (ГК); изменение вертикальной составляющей магнитного поля измеряется с помощью магнитного каротажа (МК), тепловой режим определяют проведением термического каротажа.
Искусственно возбуждаемые физические поля качественно моделируются с учетом состава пород проектного разреза и решаемых задач. Они применяются для регистрации количественных изменений заданных свойств по разрезу скважины. На моделировании ядерно- физических процессов базируются метод плотностного гамма-гамма-каротажа (ГГК-П), различные виды нейтронного каротажа — нейтронный гамма-каротаж (НГК), нейтрон-нейтронный каротаж (ННК) и др. На модели электрических потенциалов пород основан метод вызванной поляризации (ВН).
Полнота и достоверность определения геологических характеристик (состав и свойства пород и руд, их мощность и очертания контактов, структурные особенности) обеспечиваются комплексированием различных методов и видов каротажа.
В рудных скважинах универсальными стали методы магнитного, электрического и ядерно-физического каротажа. Комплексирование магнитного и электрического методов каротажа эффективно применять при разведке ликвационных сульфидных медно-никелевых, пегматитовых слюдоносных, пьезооптического кварца, скарновых магнети- товых, медных и полиметаллических, метаморфогенных железорудных и многих других месторождений. Особенно широко используется комплексирование методов электрического и ядсрно-физического каротажа при разведке месторождений легирующих, цветных, благородных, редких и радиоактивных металлов различных генетических и промышленных типов, а также месторождений угля.
Электрический каротаж угольных скважин позволяет коррелировать их разрезы, выявить пласты угля и оценить их мощность. Это тем более важно, что они могли быть не зафиксированы в керне. ГГК-С используют для оценки зольности углей.
Термический каротаж помогает изучить криологические условия в разрезе скважины; с помощью КС ПС, НГК и ННК расчленяют породы по пористости, проницаемости и водообилыюсти.
Кроме указанных видов также применяют гравитационный и сейсмоакустический каротаж. Первый основан на проявлении в поле силы тяжести влияния слабоконтрастных по плотности породных и полезных минеральных образований, второй — на скорости и затухании в них упругих волн.
Сейсморазведочные исследования нефтегазоносных залежей проводят на всех геолого-разведочных стадиях. Они применяются в варианте многократного профилирования по методу отраженных волн — общей глубинной точки (МОВ ОГТ). Высокоэффективны инновационные методики сейсмопрофилирования тонкослоистых толщ. При резко меняющихся параметрах по латсрали и вертикали используют объемную (трехмерную ЗД) сейсморазведочную модель.
К геофизическим исследованиям, контролирующим техническое состояние скважин, относятся инклинометрия и каверпометрия.
Инклинометрия служит для замера зенитных и азимутальных углов скважин. Отклонения от заданных углов называется, соответственно, зенитным и азимутальным искривлением.
Каверпометрия фиксирует фактический диаметр скважины по ее разрезу.
Геофизические исследования в горных выработках проводятся преимущественно радиометрическими методами. При разведке месторождений урана, шеелита, алмазов и битуминозных образований применяют люминесцентный метод. На различных стадиях разведки рудных месторождений используется метод радиоволнового просвечивания, позволяющий получить радиоволновую тень от рудных тел, залегающих между пьезооптическими датчиками.
Кроме того, применяются шахторудные и межскважинные методы подземной гравиразведки, магниторазведки, электромагнитной эмиссии, акустические (шумовой эмиссии) и сейсмоакустического просвечивания, а также метод измерения температур и инфракрасного излучения в шпурах, взрывных и горнопроходческих скважинах.
Геохимические исследования при разведке месторождений проводятся с целью определения вероятной глубины эрозионного среза, увязки рудопродуктивных зон в смежных разведочных линейных подсечениях, экстраполяции оруденения за их пределы, оценки рудоносности глубоких горизонтов. Эго достигается путем систематического отбора геохимических проб в горных выработках и по керну разведочных скважин, последующей обработки и проведения полуко- личественного спектрального анализа проб, с построением по результатам анализа первичных ореолов рассеяния.
Первичный ореол рассеяния представляет собой око- лорудную область пород, обогащенную в процессе рудоо- бразования элементами-индикаторами и спутниками оруденения. Первичные геохимические ореолы, образующиеся совместно с эндогенными месторождениями, называются эндогенными геохимическими ореолами. Для них характерна объемная зональность, выраженная в трех направлениях: продольном (по простиранию); поперечном (по мощности); по ширине (по падению). Зональность по направлению крутого падения называется вертикальной или осевой зональностью. Сущность вертикальной зональности заключается в избирательности элементов в определенных горизонтах месторождения.
Так, в верхних частях рудных месторождений концентрируются барий, серебро и свинец, образуя надрудпые ореолы рассеяния. На нижних горизонтах устанавливаются ореолы с подрудными элементами — медью, висмутом, кобальтом, молибденом, оловом и вольфрамом (рис. 4.3).
Рис. 4.3. Модель геохимической зональности первичных ореолов рассеяния (разрез):
1 — граниты, гранодиориты; 2 — рудное тело; 3 — первичные ореолы рассеяния (надрудные — Pb, Ag, Ва, подрудные — W, Sn, Mo, Со, Bi, Си); 4 — тектоническая зона дробления, совпадающая с осью рудного тела; 5 — эродированное рудное тело; 6 — линия
палеорельефа
Анализ минерального и химического состава, размеров и особенностей зонального строения ореолов позволяет решать указанные выше задачи на различных стадиях разведки.
Минералогические исследования направлены на решение следующих задач:
- — определение полного минерального состава руд и око- лорудных метасоматитов, минеральных форм нахождения и пространственного размещения основных и сопутствующих полезных компонентов, полезных и вредных элементов-примесей;
- — выделение природных типов руд по особенностям их минерального состава, текстурам и структурам;
- — изучение минералогической зональности в дополнение к геохимической.
Инженерно-геологические и гидрогеологические исследования входят в группу основных видов геолого-разведочных работ и служат предметом и методом изучения специальных учебных дисциплин, таких как «Инженерная геология», «Гидрогеология» и других аналогичного профиля. Задачи, вытекающие из содержания этих дисциплин, применительно к методике разведки месторождений полезных ископаемых изложены в Инструкции ГКЗ [22J в качестве требований к их изученности. Эти требования составлены в соответствии с Инструкцией по изученности инженерно-геологических условий месторождений твердых полезных ископаемых.
Инженерно-геологическими исследованиями должны быть изучены:
- — физико-механические свойства руд (первичных и зоны выветривания), вмещающих пород и перекрывающих отложений, определяющие их прочность в естественном и водонасыщенном состоянии;
- — инженерно-геологические особенности массивов пород месторождения (анизотропию массива, состав пород, их текстуры, трещиноватость с элементами тектоники, за- карстованность);
- — современные геологические процессы, которые могут осложнить разведку месторождения;
- — температурный режим массива (положение верхней и нижней границ многолетней мерзлоты), контуры и глубины распространения таликов, характер изменения физических свойств пород при оттаивании, глубина слоя сезонного оттаивания и промерзания.
Материалы инженерно-геологических исследований являются основой для прогнозной оценки устойчивости горных выработок и расчета основных параметров карьера.
Гидрогеологическим исследованиям подлежат:
- — основные водоносные горизонты, влияющие на обводненность месторождения; при этом предусматривается изучение химического состава и бактериологического состояния вод (их агрессивности по отношению к бетону, металлам, полимерам), содержания полезных и вредных компонентов;
- — участки и зоны с наибольшей обводненностью;
- — ожидаемые водопротоки в эксплутационные горные выработки;
- — вопросы использования рудничных вод для водоснабжения или извлечения из них полезных компонентов;
- — вопросы дренажа и сброса рудничных вод с оценкой их воздействия на действующие в районе месторождения водозаборы и окружающую среду в целом.
При разведке нефтегазовых месторождений гидрогеологические исследования, помимо вышеизложенных вопросов, предусматривают освещение:
- – водоносных интервалов, опробованных в открытом стволе пластоиспытателем и выделенных только по материалам ГИС;
- — содержание в подземных водах йода, бора, брома, гелия и возможности их промышленного освоения;
- — характеристики зоны продуктивных горизонтов (газового состава вод, температуры и пластового давления на уровне ВНК и ГВК).
Геокриологическими исследованиями устанавливают:
- — наличие зон многолетнемерзлых пород и погребенных пластовых льдов, их возраст, распределение и глубину залегания, изменчивость мощности по площади и температуры по разрезу;
- — гранулометрический и минеральный состав многолетнемерзлотных пород, содержание в них водорастворимых солей;
- – макро- и объемную льдистость, ее содержание и характер распределения в породах;
- – наличие межмерзлотных и подмерзлотных вод, их дебиты, химический состав и температуру;
- – прогноз динамики геокриологических явлений при разработке месторождения и рекомендации по их нейтрализации.
Другие виды геолого-разведочных работ как дополнительные методы разведки (создание системы разрезов, опробование полезного ископаемого и оценочное сопоставление) рассматриваются далее.