Коэффициент полезного действия трансформатора коэффициент трансформации

Коэффициент полезного действия трансформатора коэффициент трансформации thumbnail

КПД – коэффициент полезного действия, одна из важнейших характеристик, определяющая эффективность работы устройства, относящее к трансформаторам. Рассмотрим особенности определения указанного показателя трансформатора с учётом принципа работы, конструкции данного электрооборудования и факторов, влияющих на эффективность эксплуатации.

Общие сведения о трансформаторах

Трансформатором называют электромагнитное устройство, преобразующим переменный ток с изменением значения напряжения. Принцип работы прибора предполагает использование электромагнитной индукции.

Аппарат состоит из следующих основных элементов:

  • первичной и вторичной обмоток;
  • сердечника, вокруг которого навиты обмотки.

Принцип работы трансформатораПринцип работы трансформатора

Изменение характеристик достигается за счёт разного количества витков в обмотках на входе и выходе.

Ток на выходной катушке возбуждается за счёт создания магнитного потока при подаче напряжения на входные контакты.

Что такое КПД трансформатора и от чего зависит

Коэффициентом полезного действия (полная расшифровка данной аббревиатуры) называют отношение полезной электроэнергии к поданной на прибор.

Кроме энергии, показатель КПД может определяться расчётом по мощностным показателям при соотношении полезной величины к общей. Эта характеристика очень важна при выборе аппарата и определяет эффективность его использования.

Величина КПД зависит от потерь энергии, которые допускаются в процессе работы аппарата. Эти потери существуют следующего типа:

  • электрического – в проводниках катушек;
  • магнитного – в материале сердечника.

потери

Величина указанных потерь при проектировании устройства зависит от следующих факторов:

  • габаритных размеров устройства и формы магнитной системы;
  • компактности катушек;
  • плотности составленных комплектов пластин в сердечнике;
  • диаметра провода в катушках.

Снижение потерь в агрегате достигается в процессе проектирования устройства, с применением для изготовления сердечника магнито-мягких ферромагнитных материалов. Электротехническая сталь набирается в тонкие пластины, изолированные друг относительно друга специальным слоем нанесённого лака.

В процессе эксплуатации эффективность аппарата определяется:

  • поданной нагрузкой;
  • диэлектрической средой – веществом, использованным в качестве диэлектрика;
  • равномерностью подачи нагрузки;
  • температурой масла в агрегате;
  • степенью нагрева катушек и сердечника.

Если в ходе работы агрегат постоянно недогружать или нарушать паспортные условия эксплуатации, помимо опасности выхода из строя это ведёт к снижению эффективности устройства.

Трансформатор, в отличие от электрических машин, практически не допускает механических потерь энергии, поскольку не включает движущихся узлов. Незначительный расход энергии возникает за счёт температурного нагрева устройства.

Методы определения КПД

КПД трансформатора можно подсчитать, с использованием нескольких методов. Данная величина зависит от суммарной мощности устройства, возрастая с увеличением указанного показателя. Значение эффективности колеблется в пределах от 0,8 до 0,92 при значении мощности от 10 до 300 кВт.

Зная величину предельной мощности, можно определить значение КПД, используя специальные таблицы.

Непосредственное измерение

Формула для вычисления данного показателя может быть представлена в нескольких выражениях:

ɳ = (Р2/Р1)х100% = (Р1 – ΔР)/Р1х100% = 1 – ΔР/Р1х100%,

в которой:

  • ɳ – значение КПД;
  • Р2 и Р1 – соответственно величина полезной и потребляемой сетевой мощности;
  • ΔР – величина суммарных мощностных потерь.

Из указанной формулы видно, что значение показателя КПД не может превышать единицу.

После поэтапного преобразования приведённой формулы с учётом использования значений электротока, напряжения и угла между фазами, получается такое соотношение:

ɳ = U2хI2хcosφ2/ U2хI2хcosφ2 + Робм + Рс,

в которой:

  • U2 и I2 – соответственно, значение напряжения и тока во вторичной обмотке;
  • Робм и Рс – величина потерь в обмотках и сердечнике.

Представленная формула содержится в ГОСТе, описывающем определение данного показателя.

кпдРасчёты КПД

Определение косвенным методом

Для приборов, обладающих большой эффективностью работы, при величине КПД, превышающем 0,96, точный расчёт не всегда оказывается возможным. Поэтому данное значение определяется при помощи косвенного метода, предполагающего оценку мощностных показателей в первичной катушке, вторичной и допущенных потерь.

косвенным методом

Оценивая характеристики трансформатора, следует отметить высокую эффективность использования указанного оборудования, обусловленную его конструктивными особенностями.

Более подробно про КПД трансформатора можете прочитать здесь(откроется в новой вкладе, читать со страницы 14):Открыть файл

Источник

Известно, что электрическая энергия передаётся на большие расстояния при напряжениях, превышающих уровень, используемый потребителями. Применение трансформаторов необходимо для того, чтобы преобразовывать напряжения до требуемых значений, увеличивать качество процесса передачи электроэнергии, а также уменьшать образующиеся потери.

Описание и принцип работы трансформатора

Трансформатор представляет собой аппарат, служащий для понижения или повышения напряжения, изменения числа фаз и, в редких случаях, для изменения частоты переменного тока.

Существуют следующие типы устройств:

  • силовые;
  • измерительные;
  • малой мощности;
  • импульсные;
  • пик-трансформаторы.

Статический аппарат состоит из следующих основных конструктивных элементов: двух (или более) обмоток и магнитопровода, который также называют сердечником. В трансформаторах напряжение подаётся на первичную обмотку, и с вторичной снимается уже в преобразованном виде. Обмотки связаны индуктивно, посредством магнитного поля в сердечнике.

Трансформатор 10/0.4 кВ

Наряду с прочими преобразователями, трансформаторы обладают коэффициентом полезного действия (сокращённо — КПД), с условным обозначением . Данный коэффициент представляет собой соотношение эффективно использованной энергии к потреблённой энергии из системы. Также его можно выразить в виде соотношением мощности, потребляемой нагрузкой к потребляемой устройством из сети. КПД относится к одному из первостепенных параметров, характеризующих эффективность производимой трансформатором работы.

Виды потерь в трансформаторе

Процесс передачи электроэнергии с первичной обмотки на вторичную сопровождается потерями. По этой причине происходит передача не всей энергии, но большей её части.

В конструкции устройства не предусмотрены вращающиеся части, в отличие от прочих электромашин. Это объясняет отсутствие в нём механических потерь.

Так, в аппарате присутствуют следующие потери:

  • электрические, в меди обмоток;
  • магнитные, в стали сердечника.

Энергетическая диаграмма и Закон сохранения энергии

Принцип действия устройства можно схематически в виде энергетической диаграммы, как это показано на изображении 1. Диаграмма отражает процесс передачи энергии, в ходе которого и образуются электрические и магнитные потери .

Принцип действия

Согласно диаграмме, формула определения эффективной мощности P2 имеет следующий вид:

P2=P1-ΔPэл1-ΔPэл2-ΔPм (1)

где, P2 — полезная, а P1 — потребляемая аппаратом мощность из сети.

Обозначив суммарные потери ΔP, закон сохранения энергии будет выглядеть как: P1=ΔP+P2 (2)

Из этой формулы видно, что P1 расходуется на P2, а также на суммарные потери ΔP. Отсюда, коэффициент полезного действия трансформатора получается в виде соотношения отдаваемой (полезной) мощности к потребляемой (соотношение P2 и P1).

Определение коэффициента полезного действия

С требуемой точностью для расчёта устройства, заранее выведенные значения коэффициента полезного действия можно взять из таблицы №1:

Суммарная мощность, ВтКоэффициент полезного действия
10-200,8
20-400,85
40-1000,88
100-3000,92

Как показано в таблице, величина параметра напрямую зависит от суммарной мощности.

Определение КПД методом непосредственных измерений

Формулу для вычисления КПД можно представить в нескольких вариантах:

 (3)

Данное выражение наглядно отражает, что значение КПД трансформатора не больше единицы, а также не равно ей.

Следующее выражение определяет значение полезной мощности:

P2=U2*J2*cosφ2, (4)

где U2 и J2 — вторичные напряжение и ток нагрузки, а cosφ2 — коэффициент мощности, значение которого зависит от типа нагрузки.

Поскольку P1=ΔP+P2, формула (3) приобретает следующий вид:

 (5)

Электрические потери первичной обмотки ΔPэл1н зависят от квадрата силы протекающего в ней тока. Поэтому определять их следует таким образом:

потери первичной обмотки (6)

В свою очередь:

 (7)

где rmp — активное обмоточное сопротивление.

Так как работа электромагнитного аппарата не ограничивается номинальным режимом, определение степени загрузки по току требует использования коэффициента загрузки , который равен:

β=J2/J2н, (8)

где J2н — номинальный ток вторичной обмотки.

Отсюда, запишем выражения для определения тока вторичной обмотки:

J2=β*J2н(9)

Если подставить данное равенство в формулу (5), то получится следующее выражение:

 (10)

Отметим, что определять значение КПД, с использованием последнего выражения, рекомендовано ГОСТом.

Резюмируя представленную информацию, отметим, что определить коэффициент полезного действия трансформатора можно по значениям мощности первичной и вторичной обмотки аппарата при номинальном режиме.

Определение КПД косвенным методом

Из-за больших величин КПД, которые могут быть равны 96% и более, а также неэкономичности метода непосредственных измерений, вычислить параметр с высокой степенью точности не представляется возможным. Поэтому его определение обычно проводится косвенным методом.

коэффициент полезного действия трансформатора

Обобщив все полученные выражения, получим следующую формулу для вычисления КПД:

η=(P2/P1)+ΔPм+ΔPэл1+ΔPэл2, (11)

Подводя итог, следует отметить, что высокий показатель КПД свидетельствует об эффективно производимой работе электромагнитного аппарата. Потери в обмотках и стали сердечника, согласно ГОСТу, определяют при опыте холостого хода, либо короткого замыкания, а мероприятия, направленные на их снижение, помогут достичь максимально возможных величин коэффициента полезного действия, к чему и необходимо стремиться.

Интересное видео: КПД трансформатора 100%

Источник

Трансформатор — электронное устройство, способное менять рабочие величины, измеряется коэффициентом трансформации, k. Это число указывает на изменение, масштабирование какого-либо параметра, например напряжения, тока, сопротивления или мощности.

Что такое коэффициент трансформации

Трансформатор не меняет один параметр в другой, а работает с их величинами. Тем не менее его называют преобразователем. В зависимости от подключения первичной обмотки к источнику питания, меняется назначение прибора.

Что такое коэффициент трансформации трансформатора?

В быту широко распространены эти устройства. Их цель — подать на домашнее устройство такое питание, которое бы соответствовало номинальному значению, указанному в паспорте этого прибора. Например, в сети напряжение равно 220 вольт, аккумулятор телефона заряжается от источника питания в 6 вольт. Поэтому необходимо понизить сетевое напряжение в 220:6 = 36,7 раз, этот показатель называется коэффициент трансформации.

Чтобы точно рассчитать этот показатель, необходимо вспомнить устройство самого трансформатора. В любом таком устройстве имеется сердечник, выполненный из специального сплава, и не менее 2 катушек:

  • первичной;
  • вторичной.

Первичная катушка подключается к источнику питания, вторичная — к нагрузке, их может быть 1 и более. Обмотка — это катушка, состоящая из намотанного на каркас, или без него, электроизоляционного провода. Полный оборот провода называется витком. Первая и вторая катушки устанавливаются на сердечник, с его помощью энергия передается между обмотками.

Что такое коэффициент трансформации трансформатора?

Коэффициент трансформации трансформатора

По специальной формуле определяется число проводов в обмотке, учитываются все особенности используемого сердечника. Поэтому в разных приборах в первичных катушках число витков будет разным, несмотря на то что подключаются к одному и тому же источнику питания. Витки рассчитываются относительно напряжения, если к трансформатору необходимо подключить несколько нагрузок с разным напряжением питания, то количество вторичных обмоток будет соответствовать количеству подключаемых нагрузок.

Зная число витков провода в первичной и вторичной обмотке, можно рассчитать k устройства. Согласно определения из ГОСТ 17596-72 «Коэффициент трансформации — отношение числа витков вторичной обмотки к числу витков первичной или отношение напряжения на вторичной обмотке к напряжению на первичной обмотке в режиме холостого хода без учета падения напряжения на трансформаторе.» Если этот коэффициент k больше 1, то прибор понижающий, если меньше — повышающий. В ГОСТе такого различия нет, поэтому большее число делят на меньшее и k всегда больше 1.

Что такое коэффициент трансформации трансформатора?

В электроснабжении преобразователи помогают снизить потери при передаче электроэнергии. Для этого напряжение, вырабатываемое электростанцией, увеличивается до нескольких сотен тысяч вольт. Затем этими же устройствами напряжение понижается до требуемого значения.

На тяговых подстанциях, обеспечивающих производственный и жилой комплекс электроэнергией, установлены трансформаторы с регулятором напряжения. От вторичной катушки отводятся дополнительные выводы, подключение к которым позволяет менять напряжение в небольшом интервале. Это делается болтовым соединением или рукояткой. В этом случае коэффициент трансформации силового трансформатора указывается в его паспорте.

Что такое коэффициент трансформации трансформатора?

Определение и формула коэффициента трансформации трансформатора

Получается, что коэффициент — это постоянная величина, показывающая масштабирование электрических параметров, она полностью зависит от конструкторских особенностей устройства. Для разных параметров расчет k производится по-разному. Существуют следующие категории трансформаторов:

  • по напряжению;
  • по току;
  • по сопротивлению.

Перед определением коэффициента необходимо замерить напряжение на катушках. ГОСТ указано, что производить такое измерение нужно при холостом ходе. Это когда к преобразователю не подключена нагрузка, показания могут быть отображены на паспортной табличке этого устройства.

Затем показания первичной обмотки делят на показания вторичной, это и будет коэффициентом. При наличии сведений о количестве витков в каждой катушке производят дробление числа витков первичной обмотки на число витков вторичной. При этом расчете пренебрегают активным сопротивлением катушек. Если вторичных обмоток несколько, для каждой находят свой k.

Трансформаторы тока имеют свою особенность, их первичная обмотка включается последовательно нагрузке. Перед вычислением показателя k измеряют ток первичной и вторичной цепи. Производят разложение значения первичного тока на ток вторичной цепи. При наличии паспортных данных о количестве витков допускается произвести вычисление k путем деления числа оборотов провода вторичной обмотки на число оборотов провода первичной.

Что такое коэффициент трансформации трансформатора?

При расчете коэффициента для трансформатора сопротивления, его еще называют согласующим, сначала находят входное и выходное сопротивление. Для этого вычисляют мощность, которая равняется произведению напряжения и тока. Затем мощность делят на квадрат напряжения и получают сопротивление. Дробление входного сопротивления трансформатора и нагрузки по отношению к его первичной цепи и входного сопротивления нагрузки во вторичной цепи даст k прибора.

Что такое коэффициент трансформации трансформатора?

Есть другой способ вычисления. Необходимо найти коэффициент k по напряжению и возвести его в квадрат, результат будет аналогичным.

Разные виды трансформаторов и их коэффициенты

Хотя конструктивно преобразователи мало чем отличаются друг от друга, назначение их достаточно обширно. Существуют следующие виды трансформаторов, кроме рассмотренных:

  • силовой;
  • автотрансформатор;
  • импульсный;
  • сварочный;
  • разделительный;
  • согласующий;
  • пик-трансформатор;
  • сдвоенный дроссель;
  • трансфлюксор;
  • вращающийся;
  • воздушный и масляный;
  • трехфазный.

Особенностью автотрансформатора является отсутствие гальванической развязки, первичная и вторичная обмотка выполнены одним проводом, причем вторичная является частью первичной. Импульсный масштабирует короткие импульсные сигналы прямоугольной формы. Сварочный работает в режиме короткого замыкания. Разделительные используются там, где нужна особая безопасность по электротехнике: влажные помещения, помещения с большим количеством изделий из металла и подобное. Их k в основном равен 1.

Что такое коэффициент трансформации трансформатора?

Пик-трансформатор преобразует синусоидальное напряжение в импульсное. Сдвоенный дроссель — это две сдвоенные катушки, но по своим конструктивным особенностям относится к трансформаторам. Трансфлюксор содержит сердечник из магнитопровода, обладающего большой величиной остаточной намагниченности, что позволяет использовать его в качестве памяти. Вращающийся передает сигналы на вращающиеся объекты.

Воздушные и масляные трансформаторы отличаются способом охлаждения. Масляные применяются для масштабирования большой мощности. Трехфазные используются в трехфазной цепи.

Более подробную информацию можно узнать о коэффициенте трансформации трансформатора тока в таблице.

Почти у всех перечисленных приборов есть сердечник для передачи магнитного потока. Поток появляется благодаря движению электронов в каждом из витков обмотки, и силы токов не должны быть равны нулю. Коэффициент трансформации тока зависит и от вида сердечника:

  • стержневой;
  • броневой.

В броневом сердечнике магнитные поля оказывают большее влияние на масштабирование.

Источник

Как известно, преобразование электрической энергии в трансформаторе сопровождается потерями. Эти потери можно выразить через КПД – коэффициент полезного действия.

Где Sпотерь – это мощность потерь, S100% – это полная мощность трансформатора, Sполезная – это эффективная мощность трансформатора.

КПД – это коэффициент полезного действия, т.е. отношение преобразованной активной мощности к потребляемой. Соответственно по этому утверждению запишем формулу определения КПД трансформатора:

На самом деле, когда речь идёт о трансформаторе, формулы преобразования мощности всегда записывают через S, т.е. полную мощность P+Q (где P – активная мощность, Q – реактивная). В инженерных расчётах сумму активной и реактивной энергии всегда представляют в виде комплексного числа, в виде P+jQ, так как в действительности векторы Q и P отличаются друг от друга на определённый угол, а решение таких уравнений через комплексные числа полностью удовлетворяет ход и результаты расчётов.

Для практического определения КПД необходимо измерить мощности в первичной и вторичной обмотках, а в нагрузку подключить активное сопротивление, для обеспечения максимально коэффициента мощности (cosφ=1). Данная методика справедлива при измерении КПД тр-ра методом двух ваттметров, или методом непосредственных измерений. Так как если уменьшить значение коэффициента мощности, то измерение соотношений будет несколько не точным.

На что же тратиться энергия в трансформаторе при преобразовании? Потери в трансформаторе бывают двух видов. Первый – потери в меди трансформатора, т.е. в обмотках. Это потери на активном сопротивлении обмоток трансформатора. Энергия потерь рассеивается в виде тепла в окружающую среду. Второй вид потерь – это потери на перемагничивание сердечника трансформатора. Их ещё называют потерями в стали трансформатора. Т.е. это ничто иное, как потери на гестерезис и на вихревые токи, которые возникают в магнитопроводе. Для уменьшения влияния вихревых токов сердечник трансформатора шихтуют, то есть разделяют на изолированные друг от друга пластины, направленные вдоль протекания магнитного потока.

Благодаря шихтованному сердечнику современные промышленные трансформаторы имеют КПД 90%. КПД бытовых трансформаторов меньше, в зависимости от качества трансформаторной стали и правильности обмотки рознится от 60% и более.

Для определения потерь в стали трансформатора необходимо провести опыт холостого хода. На первичную обмотку подаётся номинальное напряжение, а вторичная остаётся не подключенной к нагрузке. Если измерить потребляемый ток, то можно вычислить мощность потерь. Так как на вторичной обмотке нет нагрузки, а сталь сердечника не насыщена, для переменного тока первичная обмотка будет представлять большое индуктивное сопротивление, влияние активного сопротивления при таком токе ничтожно мало, поэтому мы считаем, что весь потребляемый ток трансформатором в таком режиме будет током потерь в стали сердечника.

А для определения потерь в меди трансформатора необходимо провести опыт короткого замыкания. Для этого вторичная обмотка закорачивается, в разрыв цепи устанавливается амперметр. Напрямую или через трансформатор тока – зависит от величины протекающего тока. К первичной обмотке подключается регулируемый источник переменного тока, например ЛАТР (лабораторный автотрансформатор). Постепенно повышая значение напряжения на первичке, добиваются значения номинального тока во вторичной. Напряжение на первичной обмотке, при котором на вторичной устанавливается номинальный ток, называется напряжением короткого замыкания. Соответственно, через это значение находят действительный ток короткого замыкания трансформатора, определяют точный коэффициент трансформации, а так же вычисляют потери трансформатора в обмотках, так как сталь сердечника не насыщена, то в стали протекает малый магнитный поток, потерями в котором можно пренебречь.

Просмотров всего: 1 208, Просмотров за день: 3

Источник