Коэффициент полезного действия тепловой машины работающей по циклу карно

Теплова́ямаши́на — устройство, преобразующее тепловую энергию в механическую работу (тепловой двигатель) или механическую работу в тепло (холодильник). Преобразование осуществляется за счёт изменения внутренней энергии рабочего тела — на практике обычно пара или газа.

Идеальная тепловая машина — машина, в которой произведённая работа и разница между количеством подведённого и отведённого тепла равны. Работа идеальной машины описывается циклом Карно.

При работе часть тепла Q1 передается от нагревателя к рабочему телу, а затем часть энергии Q2 передается холодильнику, который охлаждает машину КПД тепловой машины считается по формуле (Q1-Q2/Q1)х100

Периодически действующий двигатель, совершающий работу за счет получаемого извне тепла, называется тепловой машиной.Понятно, что КПД машины всегда меньше единицы, поскольку не все количество полученного тепла переходит в полезную работу.

Цикл Карно́ — идеальный термодинамический цикл. Тепловая машина Карно, работающая по этому циклу, обладает максимальным КПД из всех машин, у которых максимальная и минимальная температуры осуществляемого цикла совпадают соответственно с максимальной и минимальной температурами цикла Карно. Состоит из 2 адиабатических и 2изотермических процессов.

Цикл Карно назван в честь французского военного инженера Сади Карно, который впервые его исследовал в 1824 году.

Одним из важных свойств цикла Карно является его обратимость: он может быть проведён как в прямом, так и в обратном направлении, при этом энтропия адиабатически изолированной (без теплообмена с окружающей средой) системы не меняется.

Описание цикла Карно

Пусть тепловая машина состоит из нагревателя с температурой TH, холодильника с температурой TX и рабочего тела.

Цикл Карно состоит из четырёх стадий:

1. Изотермическое расширение (на рисунке — процесс A→Б). В начале процесса рабочее тело имеет температуруTH, то есть температуру нагревателя. Затем тело приводится в контакт с нагревателем, который изотермически (при постоянной температуре) передаёт ему количество теплоты QH. При этом объём рабочего тела увеличивается.

2. Адиабатическое (изоэнтропическое) расширение (на рисунке — процесс Б→В). Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой. При этом его температура уменьшается до температуры холодильника.

3. Изотермическое сжатие (на рисунке — процесс В→Г). Рабочее тело, имеющее к тому времени температуру TX, приводится в контакт с холодильником и начинает изотермически сжиматься, отдавая холодильнику количество теплоты QX.

4. Адиабатическое (изоэнтропическое) сжатие (на рисунке — процесс Г→А). Рабочее тело отсоединяется от холодильника и сжимается без теплообмена с окружающей средой. При этом его температура увеличивается до температуры нагревателя.

При изотермических процессах температура остаётся постоянной, при адиабатических отсутствует теплообмен, а значит, сохраняется энтропия:

при δQ = 0.

Поэтому цикл Карно удобно представить в координатах T и S (температура и энтропия).

КПД тепловой машины Карно

Количество теплоты, полученное рабочим телом от нагревателя при изотермическом расширении, равно

.

Аналогично, при изотермическом сжатии рабочее тело отдало холодильнику

.

Отсюда коэффициент полезного действия тепловой машины Карно равен

.

Из последнего выражения видно, что КПД тепловой машины Карно зависит только от температур нагревателя и холодильника. Кроме того, из него следует, что КПД может составлять 100 % только в том случае, если температура холодильника равна абсолютному нулю. Это невозможно, но не из-за недостижимости абсолютного нуля (этот вопрос решается только третьим началом термодинамики, учитывать которое здесь нет необходимости), а из-за того, что такой цикл или нельзя замкнуть, или он вырождается в совокупность двух совпадающих адиабат и изотерм.

Поэтому максимальный КПД любой тепловой машины, будет меньше или равен КПД тепловой машины Карно, работающей при тех же температурах нагревателя и холодильника. Например, КПД идеального цикла Стирлинга равен КПД цикла Карно.

КПД реальных тепловых машин
Формула (2) дает теоретический предел для максимального значения КПД тепловых двигателей. Она показывает, что тепловой двигатель тем эффективнее, чем выше температура нагревателя и ниже температура холодильника. Лишь при температуре холодильника, равной абсолютному нулю, КПД равно 1. В реальных тепловых двигателях процессы протекают настолько быстро, что уменьшение и увеличение внутренней энергии рабочего вещества при изменении его объема не успевает компенсироваться притоком энергии от нагревателя и отдачей энергии холодильнику. Поэтому изотермические про цессыне могут быть реализованы. То же относится и к строго адиабатным процессам, так как в природе нет идеальных теплоизоляторов. Осуществляемые в реальных тепловых двигателях циклы состоят из двух изохор и двух адиабат (в цикле Отто), из двух адиабат, изобары и изохоры (в цикле Дизеля), из двух адиабат и двух изобар (в газовой турбине) и др. При этом следует иметь в виду, что эти циклы могут также быть идеальными, как и цикл Карно. Но для этого необходимо, чтобы температуры нагревателя и холодильника были не постоянными, как в цикле Карно, а менялись бы точно так же, как меняется температура рабочего вещества в процессах изохорного нагрева и охлаждения. Другими словами, рабочее вещество должно контактироваться с бесконечно большим числом нагревателей и холодильников — только в этом случае на изохорах будет равновесная теплопередача. Разумеется, в циклах реальных тепловых двигателей процессы являются неравновесными, вследствие чего КПД реальных тепловых двигателей при одном и том же температурном интервале значительно меньше КПД цикла Карно. Вместе с тем выражение (2) играет огромную роль в термодинамике и является своеобразным «маяком», указывающим пути повышения КПД реальных тепловых двигателей.
В цикле Отто сначала происходит всасывание в цилиндр рабочей смеси 1—2, затем адиабатное сжатие 2—3 и после ее изохорного сгорании 3—4, сопровождаемого возрастанием температуры и давления продуктов сгорания, происходит их адиабатное расширение 4—5, затем изохорное падение давления 5—2 и изобарное выталкивание поршнем отработанных газов 2—1. Поскольку на изохорах работа не совершается, а работа при всасывании рабочей смеси и выталкивании отработавших газов равна и противоположна по знаку, то полезная работа за один цикл равна разности работ на адиабатах расширения и сжатия и графически изображается площадью цикла.
Сравнивая КПД реального теплового двигателя с КПД цикла Карно, нужно отметить, что в выражении (2) температура Т2 в исключительных случаях может совпадать с температурой окружающей среды, которую мы принимаем за холодильник, в общем же случае она превышает температуру среды. Так, например, в двигателях внутреннего сгорания под Т2 следует понимать температуру отработавших газов, а не температуру среды, в которую производится выхлоп.
На рисунке изображен цикл четырехтактного двигателя внутреннего сгорания с изобарным сгоранием (цикл Дизеля). В отличие от предыдущего цикла на участке 1—2 всасывается.атмосферный воздух, который подвергается на участке 2—3 адиабатному сжатию до 3•10 6 —3•10 5 Па. Впрыскиваемое жидкое топливо воспламеняется в среде сильно сжатого, а значит, нагретого воздуха и изобарно сгорает 3—4, а затем происходит адиабатное расширение продуктов сгорании 4—5. Остальные процессы 5—2 и 2—1 протекают так же, как и в предыдущем цикле. Следует помнить, что в двигателях внутреннего сгорания циклы являются условно замкнутыми, так как перед каждым циклом цилиндр заполняется определенной массой рабочего вещества, которая по окончании цикла выбрасывается из цилиндра.
Но температура холодильника практически не может быть намного ниже температуры окружающего воздуха. Повышать температуру нагревателя можно. Однако любой материал (твердое тело) обладает ограниченной теплостойкостью, или жаропрочностью. При нагревании он постепенно утрачивает свои упругие свойства, а при достаточно высокой температуре плавится. Сейчас основные усилия инженеров направлены на повышение КПД двигателей за счет уменьшения трения их частей, потерь топлива вследствие его неполного сгорания и т. д. Реальные возможности для повышения КПД здесь все еще остаются большими. Так, для паровой турбины начальные и конечные температуры пара примерно таковы: Т1 = 800 К и T2 = 300 К. При этих температурах максимальное значение коэффициента полезного действия равно:

Действительное же значение КПД из-за различного рода энергетических потерь приблизительно равно 40%. Максимальный КПД – около 44% – имеют двигатели внутреннего сгорания. Коэффициент полезного действия любого теплового двигателя не может превышать максимально возможного значения

где T1 – абсолютная температура нагревателя, а Т2 – абсолютная температура холодильника. Повышение КПД тепловых двигателей и приближение его к максимально возможному – важнейшая техническая задача.
Коэффициент полезного действия тепловой машины
Рабочее тело, получая некоторое количество теплоты Q1от нагревателя, часть этого количества теплоты, по модулю равную |Q2|,отдает холодильнику. Поэтому совершаемая работа не может быть больше A = Q1 — |Q2|. Отношение этой работы к количеству теплоты, полученному расширяющимся газом от нагревателя, называется коэффициентом полезного действия тепловой машины:

Коэффициент полезного действия тепловой машины, работающей по замкнутому циклу, всегда меньше единицы. Задача теплоэнергетики состоит в том, чтобы сделать КПД как можно более высоким, т. е. использовать для получения работы как можно большую часть теплоты, полученной от нагревателя. Как этого можно достигнуть? Впервые наиболее совершенный циклический процесс, состоящий из изотерм и адиабат, был предложен французским физиком и инженером С. Карно в 1824 г.
42.Энтропия. Второй закон термодинамики.
 
Энтропи́я в естественных науках — мера беспорядка системы, состоящей из многих элементов. В частности, в статистической физике — мера вероятности осуществления какого-либо макроскопического состояния; в теории информации — мера неопределённости какого-либо опыта (испытания), который может иметь разные исходы, а значит и количество информации; в исторической науке, для экспликации феномена альтернативности истории (инвариантности и вариативности исторического процесса).
Энтропия в информатике — степень неполноты, неопределённости знаний.
Понятие энтропии впервые было введено Клаузиусом в термодинамике в 1865 году для определения меры необратимого рассеивания энергии, меры отклонения реального процесса от идеального. Определённая как сумма приведённых теплот, она является функцией состояния и остаётся постоянной при обратимых процессах, тогда как внеобратимых — её изменение всегда положительно.
,
где dS — приращение энтропии; δQ — минимальная теплота подведенная к системе; T — абсолютная температура процесса;
Употребление в различных дисциплинах
§ Термодинамическая энтропия — термодинамическая функция, характеризующая меры неупорядоченности системы, то есть неоднородности расположения движения её частиц термодинамической системы.
§ Информационная энтропия — мера неопределённости источника сообщений, определяемая вероятностями появления тех или иных символов при их передаче.
§ Дифференциальная энтропия — энтропия для непрерывных распределений
§ Энтропия динамической системы — в теории динамических систем мера хаотичности в поведении траекторий системы.
§ Энтропия отражения — часть информации о дискретной системе, которая не воспроизводится при отражении системы через совокупность своих частей.
§ Энтропия в теории управления — мера неопределённости состояния или поведения системы в данных условиях.
Энтропия — функция состояния системы, равная в равновесном процессе количеству теплоты, сообщённой системе или отведённой от системы, отнесённому к термодинамической температуре системы.
Энтропия — функция, устанавливающая связь между макро- и микро- состояниями; единственная функция в физике, которая показывает направленность процессов. Энтропия — функция состояния системы, которая не зависит от перехода из одного состояния в другое, а зависит только от начального и конечного положения системы.
Второе начало термодинамики — физический принцип, накладывающий ограничение на направление процессов передачи тепла между телами.
Второе начало термодинамики гласит, что невозможен самопроизвольный переход тепла от тела, менее нагретого, к телу, более нагретому.
Второе начало термодинамики запрещает так называемые вечные двигатели второго рода, показывая что коэффициент полезного действия не может равняться единице, поскольку для кругового процесса температура холодильника не должна равняться 0.
Второе начало термодинамики является постулатом, не доказываемым в рамках термодинамики. Оно было создано на основе обобщения опытных фактов и получило многочисленные экспериментальные подтверждения.
43.Эффективное сечение рассеяния. Средняя длина свободного пробега молекул.
Средняя длина свободного пробега молекул

Под средней длиной свободного пробегапонимают среднее расстояние, которое проходит молекула между двумя последовательными соударениями.
За секунду молекула в среднем проходит расстояние, численно равное ее средней скорости . Если за это же время она испытает в среднем столкновений с другими молекулами, то ее средняя длина свободного пробега , очевидно, будет равна
 

  (3.1.1)

Предположим, что все молекулы, кроме рассматриваемой, неподвижны. Молекулы будем считать шарами с диаметром d. Столкновения будут происходить всякий раз, когда центр неподвижной молекулы окажется на расстоянии меньшем или равном d от прямой, вдоль которой двигается центр рассматриваемой молекулы. При столкновениях молекула изменяет направление своего движения и затем движется прямолинейно до следующего столкновения. Поэтому центр движущейся молекулы ввиду столкновений движется по ломаной линии (рис. 1).

рис. 1

Молекула столкнется со всеми неподвижными молекулами, центры которых находятся в пределах ломаного цилиндра диаметром 2d. За секунду молекула проходит путь, равный . Поэтому число происходящих за это время столкновений равно числу молекул, центры которых попадают внутрь ломаного цилиндра, имеющего суммарную длину и радиус d. Его объем примем равным объему соответствующего спрямленного цилиндра, т. е. равным Если в единице объема газа находится n молекул, то число столкновений рассматриваемой молекулы за одну секунду будет равно

  (3.1.2)

В действительности движутся все молекулы. Поэтому число столкновений за одну секунду будет несколько большим полученной величины, так как вследствие движения окружающих молекул рассматриваемая молекула испытала бы некоторое число соударений даже в том случае, если бы она сама оставалась неподвижной.Предположение о неподвижности всех молекул, с которыми сталкивается рассматриваемая молекула, будет снято, если в формулу (3.1.2) вместо средней скорости представить среднюю скорость относительного движения рассматриваемой молекулы. В самом деле, если налетающая молекула движется со средней относительной скоростью , то молекула, с которой она сталкивается, оказывается покоящейся, что и предполагалось при получении формулы (3.1.2). Поэтому формулу (3.1.2) следует написать в виде:

  (3.1.3)

Предположим, что скорости молекул до столкновения были и Тогда Из треугольника скоростей имеем (рис. 2)

  (3.1.4)

Так как углы и скорости и , с которыми сталкиваются молекулы, очевидно, являются независимыми случайными величинами, то среднее

рис. 2

от произведения этих величин равно произведению их средних. Поэтому

  (3.1.5)

С учетом последнего равенства формулу (3.1.4) можно переписать в виде:

  (3.1.6)

так как Cредняя квадратичная скорость пропорциональна средней скорости,

  (3.1.7)

т. е. .

Поэтому соотношение (3.1.6) можно представить так:

  (3.1.8)

С учетом последнего выражения формула для средней длины свободного пробега приобретает вид:

  (3.1.9)

Для идеального газа . Поэтому

  (3.1.10)

Отсюда видно, что при изотермическом расширении (сжатии) средняя длина свободного пробега растет (убывает).Как было отмечено во введении, эффективный диаметр молекул убывает с ростом температуры. Поэтому при заданной концентрации молекул средняя длина свободного пробега увеличивается с ростом температуры.Вычисление средней длины свободного пробега для азота (d = 3•10-10 м), находящегося при нормальных условиях (р = 1,01•105 Па, Т = 273,15 К) дает: , а для числа столкновений за одну секунду: . Таким образом, средняя длина свободного пробега молекул при нормальных условиях составляет доли микрон, а число столкновений – несколько миллиардов в секунду. Поэтому процессы выравнивания температур (теплопроводность), скоростей движения слоев газа (вязкое трение) и концентраций (диффузия) являются достаточно медленными, что подтверждается опытом.

Длина свободного пробега молекулы — это среднее расстояние (обозначаемое λ), которое частица пролетает за время свободного пробега от одного столкновения до следующего.

Длина свободного пробега каждой молекулы различна, поэтому в кинетической теории вводится понятие средней длины свободного пробега (<λ>). Величина <λ> является характеристикой всей совокупности молекул газа при заданных значениях давления и температуры.

Формула

, где σ — эффективное сечение молекулы, n — концентрация молекул.

Рекомендуемые страницы:

Последнее изменение этой страницы: 2017-03-14; Просмотров: 3904; Нарушение авторского права страницы

lektsia.com 2007 – 2021 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.009 с.)
Главная | Обратная связь

Источник

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 13 мая 2020; проверки требует 1 правка.

У этого термина существуют и другие значения, см. Теорема Карно.

Теорема Карно — теорема о коэффициенте полезного действия (КПД) тепловых двигателей. Согласно этой теореме, КПД цикла Карно не зависит от природы рабочего тела и конструкции теплового двигателя и является функцией температур нагревателя и холодильника[1].

История[править | править код]

В 1824 году Сади Карно пришел к выводу: «Движущая сила тепла не зависит от агентов, взятых для её развития; её количество исключительно определяется температурами тел, между которыми, в конечном счете, производится перенос теплорода»

Логика рассуждений Карно была такова: «…можно с достаточным основанием сравнить движущую силу тепла с силой падающей воды: обе имеют максимум, который нельзя превзойти, какая бы ни была бы в одном случае машина для использования действия воды, и в другом — вещество, употребленное для развития силы тепла

Движущая сила падающей воды зависит от высоты падения и количества воды; движущая сила тепла также зависит от количества употребленного теплорода и зависит от того, что можно назвать и что мы на самом деле и будем называть высотой его падения, — то есть от разности температур тел, между которыми происходит обмен теплорода. При падении воды движущая сила строго пропорциональна разности уровней в верхнем и нижнем резервуаре. При падении теплорода движущая сила без сомнения возрастает с разностью температур между горячим и холодным телами….

Формулировки[править | править код]

Некоторые современные авторы (К. В. Глаголев , А. Н. Морозов из МГТУ им. Н. Э. Баумана) говорят уже о двух теоремах Карно, цитата:
«Приведенные выше рассуждения позволяют перейти к формулировке первой и второй теорем Карно. Их можно сформулировать в виде двух следующих утверждений:

1. Коэффициент полезного действия любой обратимой тепловой машины, работающей по циклу Карно, не зависит от природы рабочего тела и устройства машины, а является функцией только температуры нагревателя и холодильника:

2. Коэффициент полезного действия любой тепловой машины, работающей по необратимому циклу, меньше коэффициента полезного действия машины с обратимым циклом Карно, при условии равенства температур их нагревателей и холодильников:

Другие авторы (например, Б. М. Яворский и Ю. А. Селезнев) указывают на три аспекта одной теоремы Карно, цитата (см. стр. 151—152.):

3°. Термический к.п.д. обратимого цикла Карно не зависит от природы рабочего тела и определяется только температурами нагревателя и холодильника :

, ибо практически невозможно осуществить условие и теоретически невозможно осуществить холодильник, у которого : .

4°. Термический к.п.д. произвольного обратимого цикла не может превышать термический к.п.д. обратимого цикла Карно, осуществленного между теми же температурами и нагревателя и холодильника:

5°. Термический к.п.д. произвольного необратимого цикла всегда меньше термического к.п.д. обратимого цикла Карно, проведенного между температурами и :

Пункты 3° — 5° составляют содержание теоремы Карно.

Доказательства теоремы Карно[править | править код]

Существует несколько различных доказательств этой теоремы.

Доказательство Сади Карно[править | править код]

…В различных положениях поршень испытывает давления более или менее значительные со стороны воздуха, находящегося в цилиндре; упругая сила воздуха меняется как от изменения объёма, так и от изменения температуры, но необходимо заметить, что при равных объёмах, то есть для подобных положений поршня, при разрежении температура будет более высокой, чем при сжатии. Поэтому в первом случае упругая сила воздуха будет больше, а отсюда движущая сила, произведенная движением от расширения, будет больше, чем сила, нужная для сжатия. Таким образом, получится излишек движущей силы, излишек, который можно на что-нибудь употребить. Воздух послужит нам тепловой машиной; мы употребили его даже наиболее выгодным образом, так как не происходило ни одного бесполезного восстановления равновесия теплорода.

Современное доказательство для идеального газа[править | править код]

Одно из доказательств представлено в книге Д. тер Хаара и Г. Вергеланда «Элементарная термодинамика» (см. рис).

Один из возможных вариантов теоретического цикла Карно

Процесс D-E:

Поскольку газ идеальный, и внутренняя энергия остается постоянной. Все тепло, полученное от резервуара при температуре , превращается во внешнюю работу:

[1]

Процесс В-C:

Подобным же образом, работа, совершенная при изотермическом сжатии, превращается в тепло, которое передается холодному резервуару:

[2]

Процессы E-B и C-D:

Поскольку газ идеальный и зависит только от температуры , из уравнения следует, что работа, совершаемая в одном из этих двух адиабатических процессов, полностью компенсирует работу, совершаемую в другом процессе. Действительно, пользуясь адиабатическим условием , получаем:

Чтобы найти связь между , , и , заметим, что, согласно уравнению Пуассона , в адиабатических процессах:

(E → B):

(C → D):

и, следовательно,

Подставляя это соотношение в уравнения [1] и [2], получаем:

В то же время мы приходим к результату… что КПД оптимального цикла равен

Литература[править | править код]

  • S. Carnot. Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance. — Paris, Gautier-Villars, Imprimeur-Libraire, 1878.
  • Карно Николя Леонар Сади, Перевод В.Р. Бурсиана и Ю.А. Круткова. Размышления о движущей силе огня и о машинах, способных развивать эту силу.
  • Д. Тер Хаар, Г. Вергеланд. Элементарная термодинамика. Перевод с английского И. Б. Виханского. Под редакцией Н.М. Плакиды.(D. TER HAAR, Oxford University, H. WERGELAND, Norwegian Institute of Technology, Trondheim. ELEMENTS OF THERMODYNAMICS. Addison-Wesley Publishing Company). — М.: Издательство «Мир», 1968.
  • Яворский Б.М., Детлаф А.А. Справочник по физике. Для студентов и инженеров вузов. Издание седьмое, исправленное. — М.: Издательство «Наука», 1979.
  • Глаголев К.В., Морозов А.Н. Физическая термодинамика. — М.: Издательство МГТУ им Н.Э.Баумана, 2004.
  • Яворский Б.М., Селезнев Ю.А. Физика. Справочное руководство: Для поступающих в вузы. – 5-е изд., переработанное. — М.: Физматлит, 2004.

Примечания[править | править код]

  1. Главный редактор А. М. Прохоров. Карно теорема // Физический энциклопедический словарь. — М.: Советская энциклопедия (рус.). — 1983.//Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1988.

Ссылки[править | править код]

  • https://nature.web.ru/db/msg.html?mid=1165074&uri=page1.html

Источник