Коэффициент полезного действия теплового двигателя равен

Коэффициент полезного действия теплового двигателя равен thumbnail

Что такое КПД 

Коэффициент полезного действия (КПД) — это характеристика эффективности механизма преобразующего энергию. КПД обычно обозначается символом η, и представляет собой отношение полезной работы к полной работе.

Полная работа — это вся работа совершенная приложенной силой.

Полезная работа — это та работа, которая требуется от данного механизма.

Коэффициент полезного действия теплового двигателя подразумевает отношение полезной работы, совершенной данным двигателем, к количеству теплоты, полученному от нагревателя.

В науку и технику определение КПД двигателя ввёл в 1824 году французский инженер Сади Карно. 

Понятие максимального значения

В силу закона сохранения энергии часть теплоты при передаче неизбежно теряется. Также часть энергии всегда отдается холодильнику. Вывод: невозможно получить полезной работы больше или столько же, сколько затрачено энергии.

Значение КПД любого механизма всегда меньше единицы.

Как устроен тепловой двигатель

Любой тепловой двигатель состоит из трех основных частей:

  • рабочего тела;
  • нагревателя;
  • холодильника.

В основе работы двигателя лежит циклический процесс.

Циклический процесс

Нагреватель с помощью, например, сгорания топливной смеси выделяет большое количество теплоты и передает ее рабочему телу.

Рабочее тело, например пар, газ или жидкость, при нагревании расширяется и совершает работу, к примеру, вращает турбину или перемещает поршень.

Холодильник нужен, чтобы вернуть рабочее тело в начальное состояние. Он поглощает часть энергии рабочего тела. Таким образом обеспечивается цикличность, и тепловой двигатель работает непрерывно.

Идеальный тепловой двигатель Карно

Модель двигателя Карно разработал французский физик С. Карно

Рабочая часть двигателя Карно — поршень в заполненном газом цилиндре. Двигатель Карно — идеальная машина, она возможна только в теории. Поэтому в ней силы трения между поршнем и цилиндром и тепловые потери считаются равными нулю.

Механическая работа максимальна, если рабочее тело выполняет цикл, состоящий из двух изотерм и двух адиабат. При изотермическом расширении работа газа совершается за счет внутренней энергии нагревателя. При адиабатном процессе — за счет внутренней энергии расширяющегося газа. В этом цикле нет контакта тел с разной температурой, поэтому исключена теплопередача без совершения работы. Такой цикл называют циклом Карно.

Адиабатический процесс — это термодинамический процесс, происходящий без теплообмена с окружающей средой (Q=0).

Изотермический процесс — это термодинамический процесс, происходящий при постоянной температуре. Так как у идеального газа внутренняя энергия зависит только от температуры, то переданное газу количество тепла Q идет полностью на совершение работы A (Q=A).

Функционирует двигатель Карно следующим образом:

  1. Цилиндр вступает в контакт с горячим резервуаром, и газ расширяется при постоянной температуре. На этой фазе газ получает от горячего резервуара тепло.
  2. Цилиндр окружается теплоизоляцией, за счет чего количество тепла, имеющееся у газа, сохраняется. Газ продолжает расширяться, пока его температура не упадет до температуры холодного теплового резервуара.
  3. На третьей фазе теплоизоляция снимается. Газ в цилиндре, будучи в контакте с холодным резервуаром, сжимается, отдавая при этом часть тепла холодному резервуару.
  4. Когда сжатие достигает определенной точки, цилиндр снова окружается теплоизоляцией. Газ сжимается за счет поднятия поршня до тех пор, пока его температура не сравняется с температурой горячего резервуара. После этого теплоизоляция удаляется, и цикл повторяется вновь с первой фазы.

Примечание

Чем больше разница между температурами нагревателя и холодильника, тем больше КПД двигателя Карно.

Расчет коэффициента полезного действия

Формула для расчета КПД теплового двигателя:

(ɳ=frac{Q_1-Q_2}{Q_1})

Где Q1 — количество энергии, которую дает нагреватель; A — работу совершаемую рабочим телом; Q2 — количество энергии, которая отдается холодильнику.

Для расчета КПД теплового двигателя, работающего по циклу Карно, формула приобретает следующий вид:

(Elzrtln_k=frac{T_1-T_2}{T_1})

Где T1 — температура нагревателя; T2 — температура холодильника.

Примечание

Формула Карно позволяет вычислить предельный (максимально возможный) КПД теплового двигателя.

Построение графика КПД теплового двигателя

Работа, которую производит рабочее тело, в циклическом процессе численно равна площади цикла на графике зависимости давления от объема. Если цикл проходит по часовой стрелке, работа численно равна со знаком «+», если против часовой, то со знаком «-».

Для построения такого графика необходимо:

  1. Отложить объем рабочего тела (V) по оси абсцисс.
  2. Отложить давление рабочего тела (p) по оси ординат.
  3. Расположить на графике точки изотермы и адиабаты.

Для цикла Карно график будет выглядеть следующим образом:

Цикла Карно

Пример решения задачи

Задача № 1

Рассчитать КПД идеального теплового двигателя с температурой нагревания 1000º K и температурой холодильника равной 500° K.

Решение:

Применим формулу измерения КПД для идеального теплового двигателя: 

(Elzrtln_k=frac{T_1-T_2}{T_1})

T1 = 1000

T2 = 500

(Elzrtln_k=frac{1000-500}{1000})

(Elzrtln_k=0,5)

Ответ: КПД = 0,5

Источник

В тепловых двигателях используется энергия сгорающего топлива. Однако, не вся энергия сгорающего топлива затрачивается на полезную работу, часть энергии безвозвратно рассеивается в окружающую среду.

Чем меньше эта утерянная часть теплоты, тем выше будет эффективность двигателя и его коэффициент полезного действия. Тем больше полезной работы сможет совершить газ при расширении, толкая поршень двигателя, или раскручивая диск газовой турбины.

Элементы тепловой машины

Конструкции тепловых машин отличаются разнообразием. Однако, из каких бы частей двигатель не состоял, он всегда содержит рабочее тело, холодильник и нагреватель (рис. 1).

Рис. 1. Любой тепловой двигатель всегда содержит три ключевых элемента

Например, в двигателе внутреннего сгорания рабочим телом будут пары топлива и воздух.

В двигателе внутреннего сгорания роль нагревателя совместно выполняют свеча и поршень. Однако, поршень выполняет функции нагревателя только тогда, когда он сжимает газ. А свеча зажигает сжатый газ с помощью искры и вызывает горение топлива.

Чтобы передать остатки тепловой энергии атмосфере, двигатели с воздушным охлаждением имеют специальные ребристые поверхности на наружной части цилиндров.

А двигатели, в которых используется жидкостное (водяное) охлаждение, содержат насос, прокачивающий жидкость в специальных полостях двигателя и радиатор с вентилятором. Жидкость интенсивно охлаждается в радиаторе, а вентилятор обеспечивает обдув, чтобы ускорить охлаждение. Температура охлаждающей жидкости всегда выше температуры окружающего воздуха.

Какие функции выполняет каждый элемент

От нагревателя рабочее тело — газ, или пар, получает запас тепловой энергии (рис. 2). Затем, полученная энергия делится на две, как правило, неравные части. За счет одной части совершается работа.

Рис. 2. Функции ключевых элементов тепловых машин

А оставшаяся часть передается холодильнику (например, атмосфере) и рассеивается окружающей средой.

Роль холодильника в тепловом двигателе

Совершая работу, рабочее тело – расширяющийся газ, охлаждается. Температура (T_{x}), до которой газ охладился, называется температурой холодильника.

Так как газ, расширяясь, охлаждается, а при охлаждении энергию нужно куда-то девать, то никакая тепловая машина без холодильника работать не сможет. Чтобы функционировать, тепловая машина обязательно должна отдавать часть тепловой энергии холодильнику.

Обычно температура (T_{x}) немного выше температуры окружающей среды. Но если речь идет о паровых машинах, оснащенных специальным приспособлением для конденсации отработанного пара и его охлаждения – конденсатором, то (T_{x}) может быть несколько ниже температуры окружающей атмосферы (рис. 3).

Рис. 3. Если холодильником служит атмосфера, то температура холодильника выше атмосферной, а если – конденсатор, то температура холодильника ниже температуры окружающей среды

Примечание: Паровой конденсатор применяется только в конструкциях паровых двигателей.

На какие части делится энергия нагревателя

Мы выяснили, что за счет одной части энергии газ совершает работу. Вторая часть полученной от нагревателя энергии передается холодильнику, который затем рассеивает ее в окружающее пространство (рис. 4).

Эта теплота выбрасывается в атмосферу вместе с отработанным паром, или сгоревшими выхлопными газами турбин и двигателей внутреннего сгорания – то есть, теряется безвозвратно.  Главное то, что никакой газ не превращает свою внутреннюю энергию в работу полностью. Часть энергии неизбежно будет утеряна.

На полезную работу тратится только часть полученной энергии.

Рис. 4. Энергия нагревателя частично расходуется на совершение работы, оставшаяся часть теряется в окружающую среду

Посмотрев на рисунок 4, легко составить связь между энергией нагревателя, работой и энергией холодильника.

[large boxed{ Q_{H} =  Q_{X} + A }]

(large Q_{H} left(text{Дж} right) ) – тепловая энергия, полученная от нагревателя;

(large Q_{X} left(text{Дж} right) ) – тепловая энергия, переданная холодильнику;

(large A left(text{Дж} right) ) – работа, которую совершил расширяющийся газ (пар);

Так как часть энергии теряется, работа всегда будет меньше полученной энергии. Работу и энергию измеряют в джоулях. Работа – это затраченная энергия, то есть, разница между конечной и начальной энергией.

[large boxed{ Q_{H} — left| Q_{X} right| = A }]

Примечание: Полученная энергия берется со знаком «плюс», а утерянная – со знаком «минус». Нам уже известно, что энергия (Q_{X}), переданная холодильнику и утерянная, будет отрицательной. Запишем ее по модулю, чтобы не учитывать в формуле ее знак.

Формулы коэффициента полезного действия

Мы уже выяснили, что работа газа всегда меньше полученной теплоты. Чтобы ответить на вопрос, какую часть от полученной теплоты будет составлять работа, составим дробь:

[large frac{A}{Q_{H}}]

(large A left(text{Дж} right) ) – работа газа;

Эту дробь обозначают греческой буквой «эта» (eta) и называют коэффициентом полезного действия (КПД). Так как этот коэффициент дает понятие о том, как соотносятся работа, совершенная газом и, полученная им тепловая энергия.

[large boxed{eta = frac{A}{Q_{H}} }]

Числитель этой дроби всегда меньше знаменателя, математики такие дроби называют правильными. Если КПД теплового двигателя описывается правильной дробью, значит, он не может превышать единицу (рис. 5).

Рис. 5. КПД отвечает на вопрос: какая часть полученной энергии тратится на полезную работу

КПД теплового двигателя не превышает единицу, так как описывается правильной дробью.

Если подставить в числитель выражение для работы, получим развернутое выражение для вычисления КПД:

[large boxed{ eta = frac{ Q_{H} — left| Q_{X} right|}{Q_{H}} }]

Правая часть уравнения – это две дроби, имеющие одинаковые знаменатели. Если записать правую часть в виде отдельных дробей, то можно получить такое соотношение:

[large frac{ Q_{H} — left| Q_{X} right|}{Q_{H}} = frac{Q_{H}}{Q_{H}} — frac{left| Q_{X} right|}{Q_{H}} = 1 — frac{left| Q_{X} right|}{Q_{H}} ]

Подставим его в выражение для КПД и получим еще одну формулу:

[large boxed{ eta = 1 — frac{left| Q_{X} right|}{Q_{H}} }]

Какой максимальный КПД может иметь тепловой двигатель

Талантливый французский ученый и инженер Сади Карно в 1824 году придумал идеальную тепловую машину. В качестве рабочего тела в ней выступал идеальный газ. А сосуд, в который заключен газ, обернут теплоизоляцией, которую можно мысленно снять, когда возникнет такая необходимость.

Проведя мысленный эксперимент, Карно рассчитал, какую часть полученной энергии можно превратить в полезную работу при идеальных условиях. Другими словами, он рассчитал, какой максимально возможный КПД может иметь идеальный тепловой двигатель.

Для КПД идеального двигателя он получил такую формулу:

[large boxed{ eta = frac{ T_{H} — T_{X}}{T_{H}} = 1 — frac{T_{X}}{T_{H}} }]

(large T_{H} left(Kright) ) – температура нагревателя в градусах Кельвина;

(large T_{X} left(Kright) ) – температура холодильника в градусах Кельвина;

Из формулы следует:

Чем больше различаются температуры нагревателя и холодильника, тем выше будет КПД.

Если температура нагревателя сравняется с температурой холодильника, то полезной работы машина не совершит (large eta = 0 ).

Максимальный КПД даже для идеального теплового двигателя всегда меньше единицы.

Температура холодильника не может равняться абсолютному нулю, так как достигнуть абсолютного нуля температуры не получается.

Примечание: В идеальном двигателе нет потерь энергии, так как полностью отсутствует трение между его движущимися частями. В реальных двигателях трение есть, поэтому КПД реальных двигателей всегда ниже, чем КПД идеального двигателя.

КПД реальных тепловых двигателей

КПД лучших образцов реальных двигателей, выпускаемых мировой промышленностью:

  • паровых машин — менее 10 процентов.
  • большинства двигателей внутреннего сгорания – до 30 процентов.
  • газовых турбин — примерно 40 процентов.
  • двигателя внутреннего сгорания Дизеля – около 44 процентов.

В настоящее время инженеры и ученые-физики работают над тем, чтобы в реальных двигателях уменьшить трение и потери тепловой энергии. Чтобы повысить давление в цилиндре, применяют дополнительные компрессоры и турбины. Это дает выигрыш еще в несколько процентов полезности, однако, сокращает срок службы таких двигателей.

Так называемые «атмосферники» — атмосферные двигатели внутреннего сгорания, в которых не применяются дополнительные турбины и компрессоры, повышающие рабочее давление в цилиндрах, могут без капитального ремонта прослужить на автомобилях весьма длительное время.

Некоторые автомобили, оснащенные особо удачными конструкциями двигателей, успевали без капитального ремонта двигателя проехать до 1 миллиона километров. Из-за этого, такие конструкции двигателей получили в народе название «миллионники». К сожалению, ныне выпуск подобных двигателей резко сокращен, из экономических соображений.

Выводы

  1. В настоящее время изобретено много тепловых двигателей, имеющих различную конструкцию. Но любая тепловая машина всегда содержит нагреватель, холодильник и рабочее тело.
  2. Нагреватель нужен для того, чтобы сообщать тепловую энергию рабочему телу.
  3. В качестве рабочего тела используется горячий пар, или раскаленный газ. Рабочее тело полученную тепловую энергию делит на две части. За счет одной части газ расширяется и совершает работу. Вторую часть энергии передается холодильнику.
  4. Никакая тепловая машина не может работать без холодильника. Тепловая энергия, передаваемая холодильнику, рассеивается в окружающую среду и теряется безвозвратно. Даже КПД идеального теплового двигателя будет меньше единицы.
  5. Показатель полезного действия можно посчитать, взяв отношение совершенной работы A к полученному от нагревателя количеству теплоты Q.
  6. Реальные двигатели внутреннего сгорания, сконструированные инженером Дизелем, имеют максимальный КПД 44 процента. Это непревзойденный на сегодняшний день показатель среди всех выпускаемых промышленностью тепловых машин, не оснащенных дополнительными компрессорами.

Источник

Тепловой двигатель (машина) — это устройство, преобразующее внутреннюю энергию топлива в механическую работу, обмениваясь теплотой с окружающими телами. Большинство современных автомобильных, самолетных, судовых и ракетных двигателей сконструированы на принципах работы теплового двигателя. Работа производится за счет изменения объема рабочего вещества, а для характеристики эффективности работы любого типа двигателя используется величина, которая называется коэффициентом полезного действия (КПД).

Коэффициент полезного действия теплового двигателя равен

Как устроен тепловой двигатель

С точки зрения термодинамики (раздел физики, изучающий закономерности взаимных превращений внутренней и механической энергий и передачи энергии от одного тела другому) любой тепловой двигатель состоит из нагревателя, холодильника и рабочего тела.

Структурная схема работы теплового двигателя:

Рис. 1. Структурная схема работы теплового двигателя:.

Первое упоминание о прототипе тепловой машине относится к паровой турбине, которая была изобретена еще в древнем Риме (II век до н.э.). Правда, изобретение не нашло тогда широкого применения из-за отсутствия в то время многих вспомогательных деталей. Например, тогда еще не был придуман такой ключевой элемент для работы любого механизма, как подшипник.

Общая схема работы любой тепловой машины выглядит так:

  • Нагреватель имеет температуру T1 достаточно высокую, чтобы передать большое количество теплоты Q1. В большинстве тепловых машин нагревание получается при сгорании топливной смеси (топливо-кислород);
  • Рабочее тело (пар или газ) двигателя совершает полезную работу А, например, перемещают поршень или вращают турбину;
  • Холодильник поглощает часть энергии от рабочего тела. Температура холодильника Т2 < Т1. То есть, на совершение работы идет только часть теплоты Q1.

Тепловая машина (двигатель) должен работать непрерывно, поэтому рабочее тело должно вернуться в исходное состояние, чтобы его температура стала равна T1. Для непрерывности процесса работа машины должна происходить циклически, периодически повторяясь. Чтобы создать механизм цикличности — вернуть рабочее тело (газ) в исходное состояние — нужен холодильник, чтобы охладить газ в процессе сжатия. Холодильником может служить атмосфера (для двигателей внутреннего сгорания) или холодная вода (для паровых турбин).

Чему равен КПД теплового двигателя

Для определения эффективности тепловых двигателей французский инженер-механик Сади Карно в 1824г. ввел понятие КПД теплового двигателя. Для обозначения КПД используется греческая буква η. Величина η вычисляется с помощью формулы КПД теплового двигателя:

$$η={Аover Q1}$$

Поскольку $ А =Q1 – Q2$, тогда

$η ={1 – Q2over Q1}$

Поскольку у всех двигателей часть тепла отдается холодильнику, то всегда η < 1 (меньше 100 процентов).

Максимально возможный КПД идеального теплового двигателя

В качестве идеальной тепловой машины Сади Карно предложил машину с идеальным газом в качестве рабочего тела. Идеальная модель Карно работает по циклу (цикл Карно), состоящему из двух изотерм и двух адиабат.

Цикл Карно:

Рис. 2. Цикл Карно:.

Напомним:

  • Адиабатический процесс — это термодинамический процесс, происходящий без теплообмена с окружающей средой (Q=0);
  • Изотермический процесс — это термодинамический процесс, происходящий при постоянной температуре. Так как у идеального газа внутренняя энергия зависит только от температуры, то переданное газу количество тепла Q идет полностью на совершение работы A (Q = A).

Сади Карно доказал, что максимально возможный КПД, который может быть достигнут идеальным тепловым двигателем, определяется с помощью следующей формулы:

$$ηmax=1-{T2over T1}$$

Формула Карно позволяет вычислить максимально возможный КПД теплового двигателя. Чем больше разница между температурами нагревателя и холодильника, тем больше КПД.

Какие реальные КПД у разных типов двигателей

Из приведенных примеров видно, что самые большие значения КПД (40-50%) имеют двигатели внутреннего сгорания (в дизельном варианте исполнения) и реактивные двигатели на жидком топливе.

КПД реальных тепловых двигателей:

Рис. 3. КПД реальных тепловых двигателей:.

Что мы узнали?

Итак, мы узнали что такое КПД двигателя. Величина КПД любого теплового двигателя всегда меньше 100 процентов. Чем больше разность температур нагревателя T1 и холодильника Т2, тем больше КПД.

Тест по теме

Доска почёта

Чтобы попасть сюда – пройдите тест.

    

  • Диана Руслановна

    6/10

  • Каспанов Александр

    7/10

  • Алекс Свояков

    8/10

Оценка доклада

Средняя оценка: 4.2. Всего получено оценок: 203.

Источник