Коэффициент полезного действия работающего по циклу карно

Коэффициент полезного действия работающего по циклу карно thumbnail

В термодинамике цикл Карно́ или процесс Карно — это идеальный[1]круговой процесс, состоящий из двух адиабатных и двух изотермических процессов[2]. В процессе Карно термодинамическая система выполняет механическую работу за счёт обмена теплотой с двумя тепловыми резервуарами, имеющими постоянные, но различающиеся температуры. Резервуар с более высокой температурой называется нагревателем, а с более низкой температурой — холодильником[3].

Цикл Карно назван в честь французского учёного и инженера Сади Карно, который впервые его описал в своём сочинении «О движущей силе огня и о машинах, способных развивать эту силу» в 1824 году[4][5].

Поскольку идеальные процессы могут осуществляться лишь с бесконечно малой скоростью, мощность тепловой машины в цикле Карно равна нулю. Мощность реальных тепловых машин не может быть равна нулю, поэтому реальные процессы могут приближаться к идеальному процессу Карно только с большей или меньшей степенью точности.

Коэффициент полезного действия (КПД) любой тепловой машины не может превосходить КПД идеальной тепловой машины, работающей по циклу Карно с теми же самыми температурами нагревателя и холодильника[6]. По этой причине, позволяя оценить верхний предел КПД тепловой машины, цикл Карно важен для теории тепловых машин. В то же время КПД цикла Карно настолько чувствителен к отклонениям от идеальности (потерям на трение), что данный цикл никогда не применяли в реальных тепловых машинах[K 1][8].

Описание цикла Карно[править | править код]

Рис. 1. Цикл Карно в координатах T—S

Рис. 2. Цикл Карно в координатах p—V

Рис. 3. Цикл Карно на термодинамической поверхности идеального газа

Пусть тепловая машина состоит из нагревателя с температурой , холодильника с температурой и рабочего тела.

Цикл Карно состоит из четырёх обратимых стадий, две из которых осуществляются при постоянной температуре (изотермически), а две — при постоянной энтропии (адиабатически). Поэтому цикл Карно удобно представить в координатах (температура) и (энтропия).

1. Изотермическое расширение (на рис. 1 — процесс A→B). В начале процесса рабочее тело имеет температуру , то есть температуру нагревателя. При расширении рабочего тела его температура не падает за счет передачи от нагревателя количества теплоты , то есть расширение происходит изотермически (при постоянной температуре) . При этом объём рабочего тела увеличивается, оно совершает механическую работу, а его энтропия возрастает.

2. Адиабатическое расширение (на рис. 1 — процесс B→C). Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой. При этом температура тела уменьшается до температуры холодильника , тело совершает механическую работу, а энтропия остаётся постоянной.

3. Изотермическое сжатие (на рис. 1 — процесс C→D). Рабочее тело, имеющее температуру , приводится в контакт с холодильником и начинает изотермически сжиматься под действием внешней силы, отдавая холодильнику количество теплоты . Над телом совершается работа, его энтропия уменьшается.

4. Адиабатическое сжатие (на рис. 1 — процесс D→A). Рабочее тело отсоединяется от холодильника и сжимается под действием внешней силы без теплообмена с окружающей средой. При этом его температура увеличивается до температуры нагревателя, над телом совершается работа, его энтропия остаётся постоянной.

Обратный цикл Карно[править | править код]

В термодинамике холодильных установок и тепловых насосов рассматривают обратный цикл Карно, состоящий из следующих стадий[9][10]: адиабатического сжатия за счёт совершения работы (на рис. 1 — процесс В→Б); изотермического сжатия с передачей теплоты более нагретому тепловому резервуару (на рис. 1 — процесс Б→А); адиабатического расширения (на рис. 1 — процесс А→Г); изотермического расширения с отводом теплоты от более холодного теплового резервуара (на рис. 1 — процесс Г→В).

КПД тепловой машины Карно[править | править код]

Количество теплоты, полученное рабочим телом от нагревателя при изотермическом расширении, равно

Аналогично, при изотермическом сжатии рабочее тело отдаёт холодильнику

Отсюда коэффициент полезного действия тепловой машины Карно равен

Первая и вторая теоремы Карно[править | править код]

Из последнего выражения следует, что КПД тепловой машины, работающей по циклу Карно, зависит только от температур нагревателя и холодильника, но не зависит ни от устройства машины, ни от вида или свойств её рабочего тела. Этот результат составляет содержание первой теоремы Карно[11]. Кроме того, из него следует, что КПД может составлять 100 % только в том случае, если температура холодильника равна абсолютному нулю. Это невозможно, но не из-за недостижимости абсолютного нуля (этот вопрос решается только третьим началом термодинамики, учитывать которое здесь нет необходимости), а из-за того, что такой цикл или нельзя замкнуть, или он вырождается в совокупность двух совпадающих адиабат и изотерм.

Поэтому максимальный КПД любой тепловой машины не может превосходить КПД тепловой машины Карно, работающей при тех же температурах нагревателя и холодильника. Это утверждение называется второй теоремой Карно[12][13]. Оно даёт верхний предел КПД любой тепловой машины и позволяет оценить отклонение реального КПД от максимального, то есть потери энергии вследствие неидеальности тепловых процессов.

Связь между обратимостью цикла и КПД[править | править код]

Для того чтобы цикл был обратимым, в нём должна быть исключена передача теплоты при наличии разности температур, иначе нарушается условие адиабатичности процесса. Поэтому передача теплоты должна осуществляться либо в изотермическом процессе (как в цикле Карно), либо в эквидистантном процессе (обобщённый цикл Карно или, для примера, его частный случай Цикл Брайтона). Для того чтобы менять температуру рабочего тела от температуры нагревателя до температуры холодильника и обратно, необходимо использовать либо адиабатические процессы (они идут без теплообмена и, значит, не влияют на энтропию), либо циклы с регенерацией тепла при которых нет передачи тепла при разности температур. Мы приходим к выводу, что любой обратимый цикл может быть сведён к циклу Карно.

Читайте также:  Чем полезен общий массаж для ребенка

Примером обратимого цикла, не являющегося циклом Карно, но интегрально совпадающим с ним, является идеальный цикл Стирлинга: в двигателе Стирлинга добавлен регенератор, обеспечивающий полное приближение цикла к циклу Карно с достижением обратимости и тех же величин КПД[14]. Возможны и другие идеальные циклы, в которых коэффициент полезного действия определяется по той же формуле, что и для циклов Карно и Стирлинга, например цикл Эрикссона (англ.)русск., состоящий из двух изобар и двух изотерм[14].

Если же в цикле возникает передача теплоты при наличии разности температур, а таковыми являются все технические реализации термодинамических циклов, то цикл утрачивает свойство обратимости. Иначе говоря, посредством отведённой в цикле механической работы становится невозможным получить исходную теплоту. КПД такого цикла будет всегда меньше, чем КПД цикла Карно.

См. также[править | править код]

  • Термодинамические циклы
  • Первое начало термодинамики
  • Второе начало термодинамики
  • Термодинамическая энтропия
  • Термодинамические потенциалы

Комментарии[править | править код]

  1. ↑ В реальных тепловых машинах цикл Карно не используют, поскольку практически невозможно осуществить процессы изотермического сжатия и расширения. Кроме того, полезная работа цикла, представляющая собой алгебраическую сумму работ во всех четырех составляющих цикл частных процессах, даже в идеальном случае полного отсутствия потерь мала по сравнению с работой в каждом из частных процессов, то есть мы имеем дело с обычной ситуацией, когда итоговый результат представляет собой малую разность больших величин. Применительно к математическим вычислениям это означает высокую отзывчивость результата даже на небольшие вариации значений исходных величин, а в рассматриваемом нами случае соответствует высокой чувствительности полезной работы цикла Карно и его КПД к отклонениям от идеальности (потерям на трение). Эта связь с отклонениями от идеальности настолько велика, что с учетом всех потерь полезная работа цикла Карно приближается к нулю[7].

Примечания[править | править код]

  1. ↑ То есть без потерь, в первую очередь на трение.
  2. ↑ Карно цикл // Италия — Кваркуш. — М. : Советская энциклопедия, 1973. — (Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров ; 1969—1978, т. 11).
  3. ↑ Сивухин, Т. II. Термодинамика и молекулярная физика, 2005, с. 94.
  4. Carnot S. Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance. — Paris: Gauthier-Villars, Imprimeur-Libraire, 1878. — 102 p. (фр.)
  5. ↑ Второе начало термодинамики. (Работы Сади Карно — В. Томсон — Кельвин — Р. Клаузиус — Л. Больцман — М. Смолуховский) / Под. ред. А. К. Тимирязева. — Москва—Ленинград: Государственное технико-теоретическое издательство, 1934. — С. 17—61.
  6. ↑ Сивухин, Т. II. Термодинамика и молекулярная физика, 2005, с. 113—114.
  7. Бэр Г. Д., Техническая термодинамика, 1977, с. 112.
  8. ↑ Кинан Дж., Термодинамика, 1963, с. 93.
  9. ↑ Николаев Г. П., Лойко А. Э., Техническая термодинамика, 2013, с. 172.
  10. ↑ Бахшиева Л. Т. и др., Техническая термодинамика и теплотехника, 2008, с. 148.
  11. ↑ Сивухин, Т. II. Термодинамика и молекулярная физика, 2005, с. 95.
  12. ↑ Сивухин, Т. II. Термодинамика и молекулярная физика, 2005, с. 113.
  13. ↑ Румер Ю. Б., Рывкин М. Ш., Термодинамика, статистическая физика и кинетика, 2000, с. 35.
  14. 1 2 Крестовников А. Н., Вигдорович В. Н., Химическая термодинамика, 1973, с. 63.

Литература[править | править код]

  • Carnot S. Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance. — Paris: Gauthier-Villars, Imprimeur-Libraire, 1878. — 102 p. (фр.)
  • Бахшиева Л. Т., Кондауров Б. П., Захарова А. А., Салтыкова В. С. Техническая термодинамика и теплотехника / Под ред. проф А. А. Захаровой. — 2-е изд., испр. — М.: Академия, 2008. — 272 с. — (Высшее профессиональное образование). — ISBN 978-5-7695-4999-1.
  • Бэр Г. Д. Техническая термодинамика. — М.: Мир, 1977. — 519 с. (недоступная ссылка)
  • Кинан Дж. Термодинамика / Пер с англ. А. Ф. Котина под ред. М. П. Вукаловича. — М.—Л.: Госэнергоиздат, 1963. — 280 с.
  • Ландау Л. Д., Лифшиц Е. М. Статистическая физика. Часть 1. — Издание 3-е, доп. — М.: Наука, 1976. — 584 с. — («Теоретическая физика», том V).
  • Крестовников А. Н., Вигдорович В. Н. Химическая термодинамика. — 2-е изд., испр. и доп. — М.: Металлургия, 1973. — 256 с.
  • Николаев Г. П., Лойко А. Э. Техническая термодинамика. — Екатеринбург: УрФУ, 2013. — 227 с.
  • Румер Ю. Б., Рывкин М. Ш. Термодинамика, статистическая физика и кинетика. — 2-е изд., испр. и доп. — Новосибирск: Изд-во Носиб. ун-та, 2000. — 608 с. — ISBN 5-7615-0383-2.
  • Савельев И. В. Курс общей физики:Молекулярная физика и термодинамика. — М.: Астрель, 2001. — Т. 3. — 208 с. — 7000 экз. — ISBN 5-17-004585-9.
  • Сивухин Д. В. Общий курс физики. — Т. II. Термодинамика и молекулярная физика. — 5 изд., испр.. — М.: ФИЗМАТЛИТ, 2005. — 544 с. — ISBN 5-9221-0601-5.
Читайте также:  Полезный объем морозильной камеры саратов 154

Источник

Циклический процесс– совокупнось термодинамических процессов, в результате которых система возвращается в исходное состояние. На диаграммах состояния р – V (рис. 67) круговые процессы изображаются замкнутыми кривыми.

Работа, совершаемая газом за цикл, определяется площадью, охватываемой кривой; изменение внутренней энергии равно нулю:

.(3.2.32)

Первое начало термодинамикидля круговых процессов имеет вид

,(3.2.33)

где знак означает интегрирование по замкнутому контуру.

Прямым цикломназывается круговой процесс, в котором система совершает положительную работу

.(3.2.34)

Замкнутая кривая на диаграмме, изображающая прямой цикл, описывается по часовой стрелке.

Обратным циклом называется круговой процесс, в котором система совершает отрицательную работу

.(3.2.35)

На диаграмме обратный цикл изображается замкнутой кривой, проходимой против часовой стрелки.

Обратимый процесс– это такой термодинамический процесс, при котором изменение состояния системы, будучи проведено в обратном направлении, возвращает ее в исходное состояние так, чтобы система прошла через те же промежуточные состояния, что и в прямом процессе, но в обратной последовательности, а состояние тел вне системы осталось бы неизменным.

Необратимый процесс– это такой термодинамический процесс, после окончания которого систему нельзя вернуть в начальное состояние так, чтобы нигде в среде не осталось никаких изменений.

Любая тепловая машина состоит из трех частей – нагревателя, холодильника и рабочего тела.

Рабочее тело– термодинамическая система, совершающая круговой процесс и обменивающаяся энергией с другими телами. Обычно рабочим телом является газ.

Нагреватель(теплоотдатчик) – тело, сообщающее термодинамическойсистеме энергию в форме некоторого количества теплоты.

Холодильник(теплоприемник) – тело, получающее от термодинамическойсистемы энергию в виде некоторого количества теплоты.

Термодинамическийкоэффициент полезного действия тепловой машины – отношение полезной работы (работы, совершенной рабочим телом в рассматриваемом прямом круговом процессе) к сумме всех количеств тепла, сообщенных рабочему телу нагревателями:

,(3.2.36)

где – количество теплоты, полученное рабочим телом от нагревателя при температуре Т1,

– количество теплоты, Отданное рабочим телом холодильнику при температуре Т2,

А – работа, совершенная тепловой машиной за цикл,

h – термодинамический коэффициент полезного действия тепловой машины.

КПД цикла Карно

Цикл Карно– прямой круговой процесс, при котором выполненная системой работа максимальна. Цикл состоит из двух изотермических и двух адиабатических расширений и сжатий (рис. 68)

В процессе 1 – 1′ рабочее тело получает от нагревателя количество теплоты , а в процессе 2 – 2′ – рабочее тело отдает холодильнику количество, теплоты

Теорема Карно. Тепловая машина при данных значениях температур нагревателя и холо дильника, не может иметь большего КПД, чем машина, работающая по обратимому циклу Карно при тех же значениях температур нагревателя и холодильника.

Термический коэффициент полезного действия обратимого цикла Карно не зависит от природы рабочего тела и является функцией только абсолютных температур нагревателя – Т1 и холодильника Т2.

.(3.2.37)

Вобратимом цикле Карно выполняется соотношение:

,(3.2.38)

где Т1температура нагревателя, Т2температура холодильника, – количество теплоты, переданное системе нагревателем, – количество теплоты, переданное системой холодильнику.

Термический КПД произвольного обратимого цикла:

,(3.2.39)

где Тmах и Тmin – экстремальные значения температуры нагревателя и холодильника, участвующих в осуществлении рассматриваемого цикла.

Второе начало термодинамики

Первое начало термодинамики, выражает закон сохранения и превращения энергии для тепловых процессов, но не позволяет установить направление протекания термодинамических процессов.

Второе начало термодинамикиопределяет направление протекания термодинамических процессов и тем самым дает ответ на вопрос, какие процессы в природе могут протекать самопроизвольно.

Некоторые из формулировок второго начала термодинамики:

· невозможен процесс, единственным результатом которого является превращение всей теплоты, полученной от некоторого тела, в эквивалентную ей работу.

· невозможен процесс, единственным результатом которого является передача энергии в окорме теплоты от менее нагретого тела к более нагретому телу.

Прокрутить вверх

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

Источник

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 13 мая 2020; проверки требует 1 правка.

У этого термина существуют и другие значения, см. Теорема Карно.

Теорема Карно — теорема о коэффициенте полезного действия (КПД) тепловых двигателей. Согласно этой теореме, КПД цикла Карно не зависит от природы рабочего тела и конструкции теплового двигателя и является функцией температур нагревателя и холодильника[1].

История[править | править код]

В 1824 году Сади Карно пришел к выводу: «Движущая сила тепла не зависит от агентов, взятых для её развития; её количество исключительно определяется температурами тел, между которыми, в конечном счете, производится перенос теплорода»

Логика рассуждений Карно была такова: «…можно с достаточным основанием сравнить движущую силу тепла с силой падающей воды: обе имеют максимум, который нельзя превзойти, какая бы ни была бы в одном случае машина для использования действия воды, и в другом — вещество, употребленное для развития силы тепла

Читайте также:  Что входит в полезный состав продуктов

Движущая сила падающей воды зависит от высоты падения и количества воды; движущая сила тепла также зависит от количества употребленного теплорода и зависит от того, что можно назвать и что мы на самом деле и будем называть высотой его падения, — то есть от разности температур тел, между которыми происходит обмен теплорода. При падении воды движущая сила строго пропорциональна разности уровней в верхнем и нижнем резервуаре. При падении теплорода движущая сила без сомнения возрастает с разностью температур между горячим и холодным телами….

Формулировки[править | править код]

Некоторые современные авторы (К. В. Глаголев , А. Н. Морозов из МГТУ им. Н. Э. Баумана) говорят уже о двух теоремах Карно, цитата:
«Приведенные выше рассуждения позволяют перейти к формулировке первой и второй теорем Карно. Их можно сформулировать в виде двух следующих утверждений:

1. Коэффициент полезного действия любой обратимой тепловой машины, работающей по циклу Карно, не зависит от природы рабочего тела и устройства машины, а является функцией только температуры нагревателя и холодильника:

2. Коэффициент полезного действия любой тепловой машины, работающей по необратимому циклу, меньше коэффициента полезного действия машины с обратимым циклом Карно, при условии равенства температур их нагревателей и холодильников:

Другие авторы (например, Б. М. Яворский и Ю. А. Селезнев) указывают на три аспекта одной теоремы Карно, цитата (см. стр. 151—152.):

3°. Термический к.п.д. обратимого цикла Карно не зависит от природы рабочего тела и определяется только температурами нагревателя и холодильника :

, ибо практически невозможно осуществить условие и теоретически невозможно осуществить холодильник, у которого : .

4°. Термический к.п.д. произвольного обратимого цикла не может превышать термический к.п.д. обратимого цикла Карно, осуществленного между теми же температурами и нагревателя и холодильника:

5°. Термический к.п.д. произвольного необратимого цикла всегда меньше термического к.п.д. обратимого цикла Карно, проведенного между температурами и :

Пункты 3° — 5° составляют содержание теоремы Карно.

Доказательства теоремы Карно[править | править код]

Существует несколько различных доказательств этой теоремы.

Доказательство Сади Карно[править | править код]

…В различных положениях поршень испытывает давления более или менее значительные со стороны воздуха, находящегося в цилиндре; упругая сила воздуха меняется как от изменения объёма, так и от изменения температуры, но необходимо заметить, что при равных объёмах, то есть для подобных положений поршня, при разрежении температура будет более высокой, чем при сжатии. Поэтому в первом случае упругая сила воздуха будет больше, а отсюда движущая сила, произведенная движением от расширения, будет больше, чем сила, нужная для сжатия. Таким образом, получится излишек движущей силы, излишек, который можно на что-нибудь употребить. Воздух послужит нам тепловой машиной; мы употребили его даже наиболее выгодным образом, так как не происходило ни одного бесполезного восстановления равновесия теплорода.

Современное доказательство для идеального газа[править | править код]

Одно из доказательств представлено в книге Д. тер Хаара и Г. Вергеланда «Элементарная термодинамика» (см. рис).

Один из возможных вариантов теоретического цикла Карно

Процесс D-E:

Поскольку газ идеальный, и внутренняя энергия остается постоянной. Все тепло, полученное от резервуара при температуре , превращается во внешнюю работу:

[1]

Процесс В-C:

Подобным же образом, работа, совершенная при изотермическом сжатии, превращается в тепло, которое передается холодному резервуару:

[2]

Процессы E-B и C-D:

Поскольку газ идеальный и зависит только от температуры , из уравнения следует, что работа, совершаемая в одном из этих двух адиабатических процессов, полностью компенсирует работу, совершаемую в другом процессе. Действительно, пользуясь адиабатическим условием , получаем:

Чтобы найти связь между , , и , заметим, что, согласно уравнению Пуассона , в адиабатических процессах:

(E → B):

(C → D):

и, следовательно,

Подставляя это соотношение в уравнения [1] и [2], получаем:

В то же время мы приходим к результату… что КПД оптимального цикла равен

Литература[править | править код]

  • S. Carnot. Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance. — Paris, Gautier-Villars, Imprimeur-Libraire, 1878.
  • Карно Николя Леонар Сади, Перевод В.Р. Бурсиана и Ю.А. Круткова. Размышления о движущей силе огня и о машинах, способных развивать эту силу.
  • Д. Тер Хаар, Г. Вергеланд. Элементарная термодинамика. Перевод с английского И. Б. Виханского. Под редакцией Н.М. Плакиды.(D. TER HAAR, Oxford University, H. WERGELAND, Norwegian Institute of Technology, Trondheim. ELEMENTS OF THERMODYNAMICS. Addison-Wesley Publishing Company). — М.: Издательство «Мир», 1968.
  • Яворский Б.М., Детлаф А.А. Справочник по физике. Для студентов и инженеров вузов. Издание седьмое, исправленное. — М.: Издательство «Наука», 1979.
  • Глаголев К.В., Морозов А.Н. Физическая термодинамика. — М.: Издательство МГТУ им Н.Э.Баумана, 2004.
  • Яворский Б.М., Селезнев Ю.А. Физика. Справочное руководство: Для поступающих в вузы. – 5-е изд., переработанное. — М.: Физматлит, 2004.

Примечания[править | править код]

  1. Главный редактор А. М. Прохоров. Карно теорема // Физический энциклопедический словарь. — М.: Советская энциклопедия (рус.). — 1983.//Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1988.

Ссылки[править | править код]

  • https://nature.web.ru/db/msg.html?mid=1165074&uri=page1.html

Источник