Коэффициент полезного действия подвижного блока можно увеличить
- Главная
- Вопросы & Ответы
- Вопрос 1586246
более месяца назад
Просмотров : 16
Ответов : 1
Лучший ответ:
как увеличить кпд подвижного блокаСмазать ось, верёвку выбрать не толще канавки, вообщем надо уменьшить трение, которое довольно маленькое. Да и сам блок должен быть как можно легче.
более месяца назад
Ваш ответ:
Комментарий должен быть минимум 20 символов
Чтобы получить баллы за ответ войди на сайт
Лучшее из галереи за : неделю месяц все время
Другие вопросы:
Объясните, пожалуйста, поподробнее, как это решать.Найдите формулы гидроксидов, имеющих следующий состав:Mn – 61,8%Sn – 77,7%Pb – 75,3%
более месяца назад
Смотреть ответ
Просмотров : 6
Ответов : 1
Определите фонетический признак, по которому одно из слов в данном ряду будет лишним. Укажите этот признак.жасмин,кастрюля,старатель,вакансия,катамаран
более месяца назад
Смотреть ответ
Просмотров : 25
Ответов : 1
в квартире проживает валера установлен прибор учета расход холодной воды (счетчик) 1 июня счетчик показывал расход 147 куб.м воды а 1 июля 158куб.м какую сумму должен заплатить валерий за холодную воду за июнь если цена 1 куб.м холодной воды состовляет 20руб 70коп ответ дайте в рублях
более месяца назад
Смотреть ответ
Просмотров : 7
Ответов : 1
Спасайте! Решите уравнение lg(x2 2x – 7) -lg(x – 1) = 0
более месяца назад
Смотреть ответ
Просмотров : 12
Ответов : 1
. Определите, какое коммуникативное качество нарушено и что является причиной нарушения коммуникативного качества. 1. Потерпевший поджал под себя ноги и лежал невредим с разбитой головой. 2. Мы широко готовились отметить юбилей Пушкина.
более месяца назад
Смотреть ответ
Просмотров : 24
Ответов : 1
Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев
Темы кодификатора ЕГЭ: простые механизмы, КПД механизма.
Механизм – это приспособление для преобразования силы (её увеличения или уменьшения).
Простые механизмы – это рычаг и наклонная плоскость.
Рычаг.
Рычаг – это твёрдое тело, которое может вращаться вокруг неподвижной оси. На рис. 1) изображён рычаг с осью вращения . К концам рычага (точкам и ) приложены силы и . Плечи этих сил равны соответственно и .
Условие равновесия рычага даётся правилом моментов: , откуда
.
Рис. 1. Рычаг |
Из этого соотношения следует, что рычаг даёт выигрыш в силе или в расстоянии (смотря по тому, с какой целью он используется) во столько раз, во сколько большее плечо длиннее меньшего.
Например, чтобы усилием 100 Н поднять груз весом 700 Н, нужно взять рычаг с отношением плеч 7 : 1 и положить груз на короткое плечо. Мы выиграем в силе в 7 раз, но во столько же раз проиграем в расстоянии: конец длинного плеча опишет в 7 раз большую дугу, чем конец короткого плеча (то есть груз).
Примерами рычага, дающего выигрыш в силе, являются лопата, ножницы, плоскогубцы. Весло гребца – это рычаг, дающий выигрыш в расстоянии. А обычные рычажные весы являются равноплечим рычагом, не дающим выигрыша ни в расстоянии, ни в силе (в противном случае их можно использовать для обвешивания покупателей).
Неподвижный блок.
Важной разновидностью рычага является блок – укреплённое в обойме колесо с жёлобом, по которому пропущена верёвка. В большинстве задач верёвка считается невесомой нерастяжимой нитью.
На рис. 2 изображён неподвижный блок, т. е. блок с неподвижной осью вращения (проходящей перпендикулярно плоскости рисунка через точку ).
На правом конце нити в точке закреплён груз весом . Напомним, что вес тела – это сила, с которой тело давит на опору или растягивает подвес. В данном случае вес прило жен к точке , в которой груз крепится к нити.
К левому концу нити в точке приложена сила .
Плечо силы равно , где – радиус блока. Плечо веса равно . Значит, неподвижный блок является равноплечим рычагом и потому не даёт выигрыша ни в силе, ни в расстоянии: во-первых, имеем равенство , а во-вторых, в процессе движении груза и нити перемещение точки равно перемещению груза.
Зачем же тогда вообще нужен неподвижный блок? Он полезен тем, что позволяет изменить направление усилия. Обычно неподвижный блок используется как часть более сложных механизмов.
Подвижный блок.
На рис. 3 изображён подвижный блок, ось которого перемещается вместе с грузом. Мы тянем за нить с силой , которая приложена в точке и направлена вверх. Блок вращается и при этом также движется вверх, поднимая груз, подвешенный на нити .
В данный момент времени неподвижной точкой является точка , и именно вокруг неё поворачивается блок (он бы “перекатывается” через точку ). Говорят ещё, что через точку проходит мгновенная ось вращения блока (эта ось направлена перпендикулярно плоскости рисунка).
Вес груза приложен в точке крепления груза к нити. Плечо силы равно .
А вот плечо силы , с которой мы тянем за нить, оказывается в два раза больше: оно равно . Соответственно, условием равновесия груза является равенство (что мы и видим на рис. 3: вектор в два раза короче вектора ).
Следовательно, подвижный блок даёт выигрыш в силе в два раза. При этом, однако, мы в те же два раза проигрываем в расстоянии: чтобы поднять груз на один метр, точку придётся переместить на два метра (то есть вытянуть два метра нити).
У блока на рис. 3 есть один недостаток: тянуть нить вверх (за точку ) – не самая лучшая идея. Согласитесь, что гораздо удобнее тянуть за нить вниз! Вот тут-то нас и выручает неподвижный блок.
На рис. 4 изображён подъёмный механизм, который представляет собой комбинацию подвижного блока с неподвижным. К подвижному блоку подвешен груз, а трос дополнительно перекинут через неподвижный блок, что даёт возможность тянуть за трос вниз для подъёма груза вверх. Внешнее усилие на тросе снова обозначено вектором .
Принципиально данное устройство ничем не отличается от подвижного блока: с его помощью мы также получаем двукратный выигрыш в силе.
Наклонная плоскость.
Как мы знаем, тяжёлую бочку проще вкатить по наклонным мосткам, чем поднимать вертикально. Мостки, таким образом, являются механизмом, который даёт выигрыш в силе.
В механике подобный механизм называется наклонной плоскостью. Наклонная плоскость – это ровная плоская поверхность, расположенная под некоторым углом к горизонту. В таком случае коротко говорят: “наклонная плоскость с углом “.
Найдём силу, которую надо приложить к грузу массы , чтобы равномерно поднять его по гладкой наклонной плоскости с углом . Эта сила , разумеется, направлена вдоль наклонной плоскости (рис. 5).
Выберем ось так, как показано на рисунке. Поскольку груз движется без ускорения, действующие на него силы уравновешены:
.
Проектируем на ось :
,
откуда
.
Именно такую силу нужно приложить, что двигать груз вверх по наклонной плоскости.
Чтобы равномерно поднимать тот же груз по вертикали, к нему нужно приложить силу, равную . Видно, что , поскольку . Наклонная плоскость действительно даёт выигрыш в силе, и тем больший, чем меньше угол .
Широко применяемыми разновидностями наклонной плоскости являются клин и винт.
Золотое правило механики.
Простой механизм может дать выигрыш в силе или в расстоянии, но не может дать выигрыша в работе.
Например, рычаг с отношением плеч 2 : 1 даёт выигрыш в силе в два раза. Чтобы на меньшем плече поднять груз весом , нужно к большему плечу приложить силу . Но для поднятия груза на высоту большее плечо придётся опустить на , и совершённая работа будет равна:
т. е. той же величине, что и без использования рычага.
В случае наклонной плоскости мы выигрываем в силе, так как прикладываем к грузу силу , меньшую силы тяжести. Однако, чтобы поднять груз на высоту над начальным положением, нам нужно пройти путь вдоль наклонной плоскости. При этом мы совершаем работу
т. е. ту же самую, что и при вертикальном поднятии груза.
Данные факты служат проявлениями так называемого золотого правила механики.
Золотое правило механики. Ни один из простых механизмов не даёт выигрыша в работе. Во сколько раз выигрываем в силе, во столько же раз проигрываем в расстоянии, и наоборот.
Золотое правило механики есть не что иное, как простой вариант закона сохранения энергии.
КПД механизма.
На практике приходится различать полезную работу A полезн, которую нужно совершить при помощи механизма в идеальных условиях отсутствия каких-либо потерь, и полную работу Aполн,
которая совершается для тех же целей в реальной ситуации.
Полная работа равна сумме:
-полезной работы;
-работы, совершённой против сил трения в различных частях механизма;
-работы, совершённой по перемещению составных элементов механизма.
Так, при подъёме груза рычагом приходится вдобавок совершать работу по преодолению силы трения в оси рычага и по перемещению самого рычага, имеющего некоторый вес.
Полная работа всегда больше полезной. Отношение полезной работы к полной называется коэффициентом полезного действия (КПД) механизма:
=Aполезн/Аполн.
КПД принято выражать в процентах. КПД реальных механизмов всегда меньше 100%.
Вычислим КПД наклонной плоскости с углом при наличии трения. Коэффициент трения между поверхностью наклонной плоскости и грузом равен .
Пусть груз массы равномерно поднимается вдоль наклонной плоскости под действием силы из точки в точку на высоту (рис. 6). В направлении, противоположном перемещению, на груз действует сила трения скольжения .
Ускорения нет, поэтому силы, действующие на груз, уравновешены:
.
Проектируем на ось X:
. (1)
Проектируем на ось Y:
. (2)
Кроме того,
, (3)
Из (2) имеем:
.
Тогда из (3):
.
Подставляя это в (1), получаем:
.
Полная работа равна произведению силы F на путь, пройденный телом вдоль поверхности наклонной плоскости:
Aполн=.
Полезная работа, очевидно, равна:
Аполезн=.
Для искомого КПД получаем:
Словом «полезное» в физике является эффект после сопротивления. Ярким примером можно назвать сопротивление металла обрабатывающему станку, для подъемного крана – масса объекта. Например, КПД обычной лампы накапливания не превышает 5%, когда светодиодные имеют гораздо выше. Это происходит потому что большая часть потребляемой энергии уходит на генерирование теплоты, а не света.
Подобное есть и в электронике и этот коэффициент необходимо учитывать при проектировании плат, электросхем. Здесь важно учитывать сопротивление проводимости металла и использовать материалы имеющие меньшее сопротивление. В статье будут рассмотрены основные аспекты КПД, как его рассчитывать, на что он влияет и какие есть основные возможности, чтобы его увеличить.
Формула коэффициента полезного действия (КПД).
Что такое КПД
Коэффициент полезного действия (кпд) – отношение полезно используемой энергии Wп, напр. в виде работы, к общему кол-ву энергии W, получаемой системой (машиной или двигателем), Wп/W. Из-за неизбежных потерь энергии на трение и др. неравновесные процессы для реальных систем всегда. На основании второго начала термодинамики для тепловых машин наибольший кпд (отношение работы Wп, совершаемой за один цикл, к кол-ву подведённой к ней за этот цикл теплоты Q)зависит только от темп-ры нагревателя T1 и холодильника Т2 и равен = Wп/Q= (Т1- T2/T1(Карно теорема).
Как отличается параллельное и последовательное соединение резисторов.
Читать далее
Масляные трансформаторы – что это такое, устройство и принцип работы.
Читать далее
Для электрич. двигателей кпд равен отношению полезной механич. работы к электрич. энергии, получаемой от источника; в электрич. трансформаторах кпд – отношение эл–магн. энергии, получаемой во вторичной обмотке, к энергии, потребляемой в первичной обмотке. Понятие кпд имеет общий характер и применимо к разл. системам: электрич. генераторам, двигателям разного рода, полупроводниковым приборам, биол. объектам, поэтому оно может служить для сравнительной оценки эффективности разнообразных процессов.
Интересно почитать: Что такое закон Джоуля-Ленца.
Мощность и коэффициент полезного действия электродвигателей
Электрические двигатели имеют высокий коэффициент полезного действия (КПД), но все же он далек от идеальных показателей, к которым продолжают стремиться конструкторы. Все дело в том, что при работе силового агрегата преобразование одного вида энергии в другой проходит с выделение теплоты и неминуемыми потерями. Рассеивание тепловой энергии можно зафиксировать в разных узлах двигателя любого типа. Потери мощности в электродвигателях являются следствием локальных потерь в обмотке, в стальных деталях и при механической работе. Вносят свой вклад, пусть и незначительный, дополнительные потери.
Расчет КПД.
Магнитные потери мощности
При перемагничивании в магнитном поле сердечника якоря электродвигателя происходят магнитные потери. Их величина, состоящая из суммарных потерь вихревых токов и тех, что возникают при перемагничивании, зависят от частоты перемагничивания, значений магнитной индукции спинки и зубцов якоря. Немалую роль играет толщина листов используемой электротехнической стали, качество ее изоляции.
Механические и электрические потери
Механические потери при работе электродвигателя, как и магнитные, относятся к числу постоянных. Они складываются из потерь на трение подшипников, на трение щеток, на вентиляцию двигателя. Минимизировать механические потери позволяет использование современных материалов, эксплуатационные характеристики которых совершенствуются из года в год. В отличие от них электрические потери не являются постоянными и зависят от уровня нагрузки электродвигателя. Чаще всего они возникают вследствие нагрева щеток, щеточного контакта.
Падает коэффициент полезного действия (КПД) от потерь в обмотке якоря и цепи возбуждения. Механические и электрические потери вносят основной вклад в изменение эффективности работы двигателя.
Добавочные потери
Добавочные потери мощности в электродвигателях складываются из потерь, возникающих в уравнительных соединениях, из потерь из-за неравномерной индукции в стали якоря при высокой нагрузке. Вносят свой вклад в общую сумму добавочных потерь вихревые токи, а также потери в полюсных наконечниках. Точно определить все эти значения довольно сложно, поэтому их сумму принимают обычно равной в пределах 0,5-1%. Эти цифры используют при расчете общих потерь для определения КПД электродвигателя.
КПД и его зависимость от нагрузки
Коэффициент полезного действия (КПД) электрического двигателя это отношение полезной мощности силового агрегата к мощности потребляемой. Этот показатель у двигателей, мощностью до 100 кВт находится в пределах от 0,75 до 0,9. для более мощных силовых агрегатов КПД существенно выше: 0,9-0,97. Определив суммарные потери мощности в электродвигателях можно достаточно точно вычислить коэффициент полезного действия любого силового агрегата. Этот метод определения КПД называется косвенным и он может применяться для машин различной мощности.
Инженер по специальности “Программное обеспечение вычислительной техники и автоматизированных систем”, МИФИ, 2005–2010 гг.
Задать вопрос
Для маломощных силовых агрегатов часто используют метод непосредственной нагрузки, заключающийся в измерениях потребляемой двигателем мощности. КПД электрического двигателя не является величиной постоянной, своего максимума он достигает при нагрузках около 80% мощности.
Достигает он пикового значения быстро и уверенно, но после своего максимума начинает медленно уменьшаться. Это связывают с возрастанием электрических потерь при нагрузках, более 80% от номинальной мощности. Падение коэффициента полезного действия не велико, что позволяет говорить о высоких показателях эффективности электродвигателей в широком диапазоне мощностей.
В чем измеряется КПД
Коэффициент полезного действия (кпд), характеристика эффективности системы (устройства, машины) в отношении преобразования или передачи энергии; определяется отношением полезно использованной энергии к суммарному количеству энергии, полученному системой; обозначается обычно h = Wпол/Wcyм.
В электрических двигателях кпд — отношение совершаемой (полезной) механической работы к электрической энергии, получаемой от источника; в тепловых двигателях — отношение полезной механической работы к затрачиваемому количеству теплоты; в электрических трансформаторах — отношение электромагнитной энергии, получаемой во вторичной обмотке, к энергии, потребляемой первичной обмоткой.
Интересно почитать: Как образуется статическое электричество.
Для вычисления кпд разные виды энергии и механическая работа выражаются в одинаковых единицах на основе механического эквивалента теплоты, и др. аналогичных соотношений. В силу своей общности понятие кпд позволяет сравнивать и оценивать с единой точки зрения такие различные системы, как атомные реакторы, электрические генераторы и двигатели, теплоэнергетические установки, полупроводниковые приборы, биологические объекты и т. д.
Из-за неизбежных потерь энергии на трение, на нагревание окружающих тел и т. п. кпд всегда меньше единицы. Соответственно этому кпд выражается в долях затрачиваемой энергии, т. е. в виде правильной дроби или в процентах, и является безразмерной величиной. Кпд тепловых электростанций достигает 35—40%, двигателей внутреннего сгорания — 40—50%, динамомашин и генераторов большой мощности—95%, трансформаторов—98%.
В чем измеряется КПД.
Кпд процесса фотосинтеза составляет обычно 6—8%, у хлореллы он достигает 20—25%. У тепловых двигателей в силу второго начала термодинамики кпд имеет верхний предел, определяемый особенностями термодинамического цикла (кругового процесса), который совершает рабочее вещество. Наибольшим кпд обладает Карно цикл. Различают кпд отдельного элемента (ступени) машины или устройства и кпд, характеризующий всю цепь преобразований энергии в системе. Кпд первого типа в соответствии с характером преобразования энергии может быть механическим, термическим и т. д. Ко второму типу относятся общий, экономический, технический и др. виды кпд. Общий кпд системы равен произведению частных кпд, или кпд ступеней.
В технической литературе кпд иногда определяют т. о., что он может оказаться больше единицы. Подобная ситуация возникает, если определять кпд отношением Wпол/Wзатр, где Wпол — используемая энергия, получаемая на «выходе» системы, Wзатр — не вся энергия, поступающая в систему, а лишь та её часть, для получения которой производятся реальные затраты.
Например, при работе полупроводниковых термоэлектрических обогревателей (тепловых насосов) затрата электроэнергии меньше количества теплоты, выделяемой термоэлементом. Избыток энергии черпается из окружающей среды. При этом, хотя истинный кпд установки меньше единицы, рассмотренный кпд h = Wпол/Wзатр может оказаться больше единицы.
Примеры расчета КПД.
Для чего нужен расчет КПД
Коэффициент полезного действия электрической цепи – это отношение полезного тепла к полному. Для ясности приведем пример. При нахождении КПД двигателя можно определить, оправдывает ли его основная функция работы затраты потребляемого электричества. То есть его расчет даст ясную картину, насколько хорошо устройство преобразовывает получаемую энергию. Обратите внимание! Как правило, коэффициент полезного действия не имеет величины, а представляет собой процентное соотношение либо числовой эквивалент от 0 до 1. КПД находят по общей формуле вычисления, для всех устройств в целом. Но чтобы получить его результат в электрической цепи, вначале потребуется найти силу электричества.
По физике известно, что любой генератор тока имеет свое сопротивление, которое еще принято называть внутренняя мощность. Помимо этого значения, источник электричества также имеет свою силу. Дадим значения каждому элементу цепи: сопротивление – r; сила тока – Е; резистор (внешняя нагрузка) – R. Полная цепь Итак, чтобы найти силу тока, обозначение которого будет – I, и напряжение на резисторе – U, потребуется время – t, с прохождением заряда q = lt. Рассчитать работу источника тока можно по следующей формуле: A = Eq = EIt. В связи с тем, что сила электричества постоянна, работа генератора целиком преобразуется в тепло, выделяемое на R и r. Такое количество можно рассчитать по закону Джоуля-Ленца: Q = I2 + I2 rt = I2 (R + r) t.
Формулы расчета КПД.
Затем приравниваются правые части формулы: EIt = I2 (R + r) t. Осуществив сокращение, получается расчет: E = I(R + r). Произведя у формулы перестановку, в итоге получается: I = E R + r. Данное итоговое значение будет являться электрической силой в данном устройстве. Произведя таким образом предварительный расчет, теперь можно определить КПД.
Расчет КПД электрической цепи Мощность, получаемая от источника тока, называется потребляемой, определение ее записывается – P1. Если эта физическая величина переходит от генератора в полную цепь, она считается полезной и записывается – Р2. Чтобы определить КПД цепи, необходимо вспомнить закон сохранения энергии.
В соответствии с ним, мощность приемника Р2 будет всегда меньше потребляемой мощности Р1. Это объясняется тем, что в процессе работы в приемнике всегда происходит неизбежная пустая трата преобразуемой энергии, которая расходуется на нагревание проводов, их оболочки, вихревых токов и т.д. Чтобы найти оценку свойств превращения энергии, необходим КПД, который будет равен отношению мощностей Р2 и Р1.
Итак, зная все значения показателей, составляющих электроцепи, находим ее полезную и полную работу: А полезная. = qU = IUt =I2Rt; А полная = qE = IEt = I2(R+r)t. В соответствии этих значений, найдем мощности источника тока: Р2 = А полезная /t = IU = I2 R; P1 = А полная /t = IE = I2 (R + r). Произведя все действия, получаем формулу КПД: n = А полезная / А полная = Р2 / P1 =U / E = R / (R +r). У этой формулы получается, что R выше бесконечности, а n выше 1, но при всем этом ток в цепи остается в низком положении, и его полезная мощность мала.
Каждый желает найти КПД повышенного значения. Для этого необходимо найти условия, при которых P2 будет максимален. Оптимальные значения будут: dP2 / dR = 0. Далее определить КПД можно формулами: P2 = I2 R = (E / R + r)2 R; dP2 / dR = (E2 (R + r)2 — 2 (r + R) E2 R) / (R + r)4 = 0; E2 ((R + r) -2R) = 0. В данном выражении Е и (R + r) не равны 0, следовательно, ему равно выражение в скобках, то есть (r = R). Тогда получается, что мощность имеет максимальное значение, а коэффициент полезного действия = 50 %. Как видно, найти коэффициент полезного действия электрической цепи можно самостоятельно, не прибегая к услугам специалиста. Главное –соблюдать последовательность в расчетах и не выходить за рамки приведенных формул.
Примеры расчета КПД
Пример 1. Нужно рассчитать коэффициент для классического камина. Дано: удельная теплота сгорания березовых дров – 107Дж/кг, количество дров – 8 кг. После сгорания дров температура в комнате повысилась на 20 градусов. Удельная теплоемкость кубометра воздуха – 1,3 кДж/ кг*град. Общая кубатура комнаты – 75 кубометров.
Чтобы решить задачу, нужно найти частное или отношение двух величин. В числителе будет количество теплоты, которое получил воздух в комнате (1300Дж*75*20=1950 кДж ). В знаменателе – количество теплоты, выделенное дровами при горении (10000000Дж*8 =8*107 кДж). После подсчетов получаем, что энергоэффективность дровяного камина – около 2,5%. Действительно, современная теория об устройстве печей и каминов говорит, что классическая конструкция не является энергоэффективной. Это связано с тем, что труба напрямую выводит горячий воздух в атмосферу.
Для повышения эффективности устраивают дымоход с каналами, где воздух сначала отдает тепло кладке каналов, и лишь потом выходит наружу. Но справедливости ради, нужно отметить, что в процессе горения камина нагревается не только воздух, но и предметы в комнате, а часть тепла выходит наружу через элементы, плохо теплоизолированные – окна, двери и т.д.
Расчет коэффициента полезного действия.
Пример 2. Автомобиль проделал путь 100 км. Вес машины с пассажирами и багажом – 1400 кг. При этом было затрачено14 литров бензина. Найти: КПД двигателя.
Для решения задачи необходимо отношение работы по перемещению груза к количеству тепла, выделившемуся при сгорании топлива. Количество тепла также измеряется в Джоулях, поэтому не придется приводить к другим единицам. A будет равна произведению силы на путь( A=F*S=m*g*S). Сила равна произведению массы на ускорение свободного падения. Полезная работа = 1400 кг x 9,8м/с2 x 100000м=1,37*108 Дж
Удельная теплота сгорания бензина – 46 МДж/кг=46000 кДж/кг. Восемь литров бензина будем считать примерно равными 8 кг. Тепла выделилось 46*106*14=6.44*108 Дж. В результате получаем η ≈21%.
Почему коэффициент полезного действия всегда меньше 100%?
КПД 100%