Коэффициент полезного действия механической передачи это

Коэффициент полезного действия механической передачи это thumbnail

Коэффициент полезного действия механической передачи это

Механической передачей или просто передачей называют механизм, служащий для передачи механической энергии на расстояние от двигателя к рабочему органу машины с преобразованием скоростей и крутящих моментов. Необходимость передач обусловливается различными скоростями движения вала двигателя и рабочего органа машины. Для большинства машин частота вращения n1 вала двигателя больше частоты вращения n2 рабочего органа.

Важнейшим параметром передачи является передаточноеотношение.

Передаточное отношение – это отношение угловой скорости ω1 ведущего вала к угловой скорости ω2 ведомого:

(4.98)

Условимся в дальнейшем параметрам ведущего звена присваивать индекс 1, а параметрам ведомого элемента – индекс 2.

Независимо от вида передачи все они имеют ряд общих параметров, которые используются при проектировании и расчете.

Окружнаяскорость

(4.99)

где ω — угловая скорость, рад/с; D – диаметр звена передачи, м; п – частота вращения, об/мин; V- окружная скорость, м/с.

Окружная сила – сила, действующая на звено, вызывающая его вращение и направленная по касательной к траектории точки ее приложения:

, (4.100)

где Ftокружная сила, Н; Т –крутящий момент, Н×м, D [м].

Мощность Р при поступательном движениивыражается формулой:

(4.101)

в которой используются следующие единицы измерений: мощность – [Вт], окружная сила – [Н] и скорость – [м/с].

При вращательном движении мощность равна:

(4.102)

В формуле (3.5) Р –мощность, [Вт]; Т– крутящий момент [Н×м] и w – угловая скорость [рад/с].

Часто, зная передаваемую мощность и угловую скорость, приходится определять крутящий момент:

(4.103)

Поскольку в технике обычно мощность выражают в киловаттах, а частота вращения n в об./мин., то для определения крутящего момента, выраженного в Н·м, используют зависимость:

(4.104)

где Р – в [кВт], а n – в [об/мин]. Формула (4.7) получена из (4.6) с учетом того, что 1 кВт = 103Вт и w=πn/30, Т – [Нм].

Коэффициент полезного действия передачи представляет собой отношение полезной мощности на ведомом звене к затраченной мощности ведущего звена, т.е.

(4.105)

Отметим, что коэффициент полезного действия всегда меньше единицы и общий КПД последовательно соединенных передач равен произведению КПД каждой передачи.

Предварительные сравнения различных типов передач по коэффициенту полезного действия можно приводить с помощью табл. 4.3.

Зубчатые передачи

Зубчатые и червячные передачи широко распространены в различных областях машиностроения и являются основными видами передач, применяемых в современных машинах. Большое распространение зубчатых и червячных передач объясняется рядом существенных преимуществ их по сравнению с другими видами. Отметим основные преимущества: компактность, возможность осуществления постоянного передаточного отношения, высокий КПД, долговечность, надежность в работе, простоту облуживания, использование для изготовления экономичных материалов.

По условиям эксплуатации зубчатые и червячные передачи могут быть открытыми и закрытыми. Закрытые передачи размещают в металлическом корпусе, заполненном до определенного уровня маслом. Если закрытая зубчатая передача представляет собой самостоятельный монтажный узел, то она называется редукторной передачей или редуктором.

В зависимости от взаимного расположения осей вращения ведущего и ведомого валов различают следующие основные виды зубчатых и червячных передач:

· Передача вращения между валами с параллельными осями осуществляется цилиндрическими колесами с прямыми, косыми и шевронными зубьями (рис. 4.1). В прямозубых цилиндрических колесах (рис. 4.1. а) зубья располагаются параллельно осям вращения. В косозубых колесах (рис. 4.1. б) зубья расположены по винтовым линиям правого или левого направления. В шевронных зубчатых колесах (рис. 4.1. в) зубья располагаются также по винтовым линиям, но имеют на каждой половине колеса противоположное направление. Применением косозубых и шевронных колес достигается повышение плавности, бесшумности и увеличение нагрузочной способности зубчатых передач, что позволяет их использовать при более высоких скоростях вращения, чем прямозубые цилиндрические колеса.

Таблица 4.3

Ориентировочные значения основных параметров передач вращательного движения

Вид передачи Передаточное отношение КПД при номинальной нагрузке Относительные размеры* Относительная стоимость*
Часто встречающиеея Наибольшее
Цилиндрическая зубчатая Прямозубая
Косозубая
3-5
3-6
0,95-0,98
0,95-0,98
0,9 0,95
Коническая зубчатая
Винтовая зубчатая
2-4
1-4
0,9-0,97
0,8-0,9
1,2
1,4
1,3
1,3
Червячная Однозаходная
Двухзаходная
Четырехзаходная
30-800
15-40
10-20
0,5-0,65
0,7-0,8
0,8-0,98
0,5
0,5
0,5
0,7-0,8
0,7-0,8
0,7-0,8
Ременная Плоскоременная
Клиноременная
2-4
2-6
0,92-0,96
0,9-0,95
2-2,5 0,9
0,8
Цепная 2-4 0,9-0,94 1,5-2,5 0,9
Фрикционная 2-4 0,75-0,9 1,5-2 0,9
        

* Относительные размеры и стоимость передач сопоставимы при одинаковых передаточных отношениях и передаваемой мощности.

Рис. 4.1

Рис. 4.2

· Передача вращения между валами с пересекающимися осями осуществляется коническими колесами с прямыми и непрямыми (косыми, круговыми, спиральными) зубьями (рис. 4.2). Применение непрямозубых колес также увеличивает плавность и нагрузочную способность передач и допускает более высокие скорости вращения по сравнению с прямозубыми.

Рис. 4.3

· Передача вращения между валами со скрещивающимися осями осуществляется червячной, червячно-спироидной, гипоидной передачей. Наибольшее распространение среди перечисленных передач получила червячная передача с цилиндрическим архимедовым червяком (рис. 4.3). Ведущим звеном червячной передачи является червяк, имеющий цилиндрическую форму и представляющий собой однозаходный или многозаходный винт с трапецеидальной или близкой к ней нарезкой. Ведомое звено передачи – червячное колесо, имеющее вогнутую форму профиля и зубья, расположенные по винтовым линиям. Червячная передача позволяет получить большие передаточные отношения (до 300). Недостаток сравнительно низкий КПД (0,50…0,85).

Источник

Рассмотрим режим установившегося движения. Для каждого полного цикла этого движения приращение кинетической энергии механизма равно нулю (6.76). Следовательно, работа Ли в уравнении (6.8) также равна нулю, как и работа Ас т сил тяжести. Таким образом, для установившегося движения уравнение работ (6.7в) имеет следующий вид:

то есть, за полный цикл установившегося движения работа всех движущих сил равна работе всех производственных Ап с и всех непроизводственных Ат сил сопротивления.

Механическим коэффициентом полезного действия (КПД) называется отношение абсолютной величины работы сил производственных сопротивлений к работе всех движущих сил за цикл установившегося движения:

или, принимая во внимание уравнение (6.10), получаем
или по (6.10):

где |/ — механический коэффициент потерь, то есть отношение работы непроизводственных сопротивлений к работе движущих сил.

Чем меньше в механизме работа непроизводственных сопротивлений, тем меньше его коэффициент потерь и тем совершеннее механизм в энергетическом отношении, то есть, тем больше его коэффициент полезного действия. В некоторых случаях удобно вводить

в рассмотрение коэффициент
, и тогда

Из (6.11 в) также следует общеизвестное правило, что коэффициент полезного действия всегда меньше единицы, поскольку работа Ат непроизводственных сопротивлений ни в одном реальном механизме не может равняться нулю. Также из (6.11в) мы можем определить другой частный вид, когда коэффициент полезного действия равен нулю, что возможно при Аа = Ат, то есть когда работа движущих сил равна работе сил непроизводственных сопротивлений механизма. В этом случае механизм движется вхолостую — движение механизма совершается без совершения полезной работы. Если же Адт, то механизм, находящийся в покое, не сможет прийти в действительное движение — явление самоторможения механизма. А если он двигался, то он перейдет самопроизвольно в состояние покоя, постепенно замедляя свой ход — механизм затормозится. Следовательно, получение при теоретических расчетах отрицательного значения коэффициента полезного действия служит признаком самоторможения механизма или невозможности движения механизма в заданном направлении с заданными динамическими характеристиками.

Рис. 6.14. Последовательное соединение механизмов Таким образом, КПД механизма изменяется в диапазоне

а коэффициенты ф и ЧК в пределах

Рассмотрим коэффициент полезного действия нескольких механизмов, соединенных последовательно (рис. 6.14). Первый механизм приводится в движение движущими силами, совершающими работу Аг Так как полезная работа каждого предыдущего механизма является работой движущих сил для каждого последующего, то коэффициент полезного действия каждого из них в отдельности будет равен

Общий коэффициент полезного действия равен
. Его

значение можно получить, если перемножить все отдельные КПД каждого механизма rj,, г|2, … .

Значения работ за полное время установившегося движения машины пропорциональны средним значениям мощностей за тот же период времени. Поэтому (6.11) можно переписать в виде

или

Выше был рассмотрен простейший случай последовательного соединения механизмов. В современных машинах весьма часто соединение механизмов оказывается более сложным, например, таким как показано на рис. 6.15.

Рис. 6.15. Сложное соединение механизмов

Поток энергии от механизма 2 распределяется по двум направлениям. В свою очередь от механизма 3” поток энергии распределяется также по двум направлениям. Общая работа сил производственных сопротивлений равна Апс = Д, + Д, + Д,. Следовательно, общий КПД всей системы равен

На рис. 6.15 показаны три потока энергии от общего источника энергии: сплошной линией — поток I—I, штриховой линией — поток //—//, штрихпунктирной линией — поток III—III. Работа Лл может быть выражена через работы Д’, Д,, Д, и через соответствующие КПД отдельных механизмов:

где
— общие КПД каждого из потоков I—I, II—II, III—

III, равные

С учетом этого и (6.16), (6.17), общий КПД всей системы механизмов равен

Из этой формулы следует, что общий КПД действия в значительной степени зависит от той схемы распределения потоков энергии, которая была принята при проектировании общей схемы системы механизмов.

Источник

Словом «полезное» в физике является эффект после сопротивления. Ярким примером можно назвать сопротивление металла обрабатывающему станку, для подъемного крана  – масса объекта. Например, КПД обычной лампы накапливания не превышает 5%, когда светодиодные имеют гораздо выше. Это происходит потому что большая часть потребляемой энергии уходит на генерирование теплоты, а не света.

Подобное есть и в электронике и этот коэффициент необходимо учитывать при проектировании плат, электросхем. Здесь важно учитывать сопротивление проводимости металла и использовать материалы имеющие меньшее сопротивление. В статье будут рассмотрены основные аспекты КПД, как его рассчитывать, на что он влияет и какие есть основные возможности, чтобы его увеличить.

Формула коэффициента полезного действия (КПД).

Что такое КПД

Коэффициент полезного действия (кпд) – отношение полезно используемой энергии Wп, напр. в виде работы, к общему кол-ву энергии W, получаемой системой (машиной или двигателем), Wп/W. Из-за неизбежных потерь энергии на трение и др. неравновесные процессы для реальных систем всегда. На основании второго начала термодинамики для тепловых машин наибольший кпд (отношение работы Wп, совершаемой за один цикл, к кол-ву подведённой к ней за этот цикл теплоты Q)зависит только от темп-ры нагревателя T1 и холодильника Т2 и равен = Wп/Q= (Т1- T2/T1(Карно теорема).

Как отличается параллельное и последовательное соединение резисторов.

Читать далее

Масляные трансформаторы – что это такое, устройство и принцип работы.

Читать далее

Для электрич. двигателей кпд равен отношению полезной механич. работы к электрич. энергии, получаемой от источника; в электрич. трансформаторах кпд – отношение эл–магн. энергии, получаемой во вторичной обмотке, к энергии, потребляемой в первичной обмотке. Понятие кпд имеет общий характер и применимо к разл. системам: электрич. генераторам, двигателям разного рода, полупроводниковым приборам, биол. объектам, поэтому оно может служить для сравнительной оценки эффективности разнообразных процессов.

Интересно почитать: Что такое закон Джоуля-Ленца.

Мощность и коэффициент полезного действия электродвигателей

Электрические двигатели имеют высокий коэффициент полезного действия (КПД), но все же он далек от идеальных показателей, к которым продолжают стремиться конструкторы. Все дело в том, что при работе силового агрегата преобразование одного вида энергии в другой проходит с выделение теплоты и неминуемыми потерями. Рассеивание тепловой энергии можно зафиксировать в разных узлах двигателя любого типа. Потери мощности в электродвигателях являются следствием локальных потерь в обмотке, в стальных деталях и при механической работе. Вносят свой вклад, пусть и незначительный, дополнительные потери.

Расчет КПД.

Расчет КПД.

Магнитные потери мощности

При перемагничивании в магнитном поле сердечника якоря электродвигателя происходят магнитные потери. Их величина, состоящая из суммарных потерь вихревых токов и тех, что возникают при перемагничивании, зависят от частоты перемагничивания, значений магнитной индукции спинки и зубцов якоря. Немалую роль играет толщина листов используемой электротехнической стали, качество ее изоляции.

Механические и электрические потери

Механические потери при работе электродвигателя, как и магнитные, относятся к числу постоянных. Они складываются из потерь на трение подшипников, на трение щеток, на вентиляцию двигателя. Минимизировать механические потери позволяет использование современных материалов, эксплуатационные характеристики которых совершенствуются из года в год. В отличие от них электрические потери не являются постоянными и зависят от уровня нагрузки электродвигателя. Чаще всего они возникают вследствие нагрева щеток, щеточного контакта.

Падает коэффициент полезного действия (КПД) от потерь в обмотке якоря и цепи возбуждения. Механические и электрические потери вносят основной вклад в изменение эффективности работы двигателя.

Добавочные потери

Добавочные потери мощности в электродвигателях складываются из потерь, возникающих в уравнительных соединениях, из потерь из-за неравномерной индукции в стали якоря при высокой нагрузке. Вносят свой вклад в общую сумму добавочных потерь вихревые токи, а также потери в полюсных наконечниках. Точно определить все эти значения довольно сложно, поэтому их сумму принимают обычно равной в пределах 0,5-1%. Эти цифры используют при расчете общих потерь для определения КПД электродвигателя.

КПД и его зависимость от нагрузки

Коэффициент полезного действия (КПД) электрического двигателя это отношение полезной мощности силового агрегата к мощности потребляемой. Этот показатель у двигателей, мощностью до 100 кВт находится в пределах от 0,75 до 0,9. для более мощных силовых агрегатов КПД существенно выше: 0,9-0,97. Определив суммарные потери мощности в электродвигателях можно достаточно точно вычислить коэффициент полезного действия любого силового агрегата. Этот метод определения КПД называется косвенным и он может применяться для машин различной мощности.

Лагутин Виталий Сергеевич

Инженер по специальности “Программное обеспечение вычислительной техники и автоматизированных систем”, МИФИ, 2005–2010 гг.

Задать вопрос

Для маломощных силовых агрегатов часто используют метод непосредственной нагрузки, заключающийся в измерениях потребляемой двигателем мощности. КПД электрического двигателя не является величиной постоянной, своего максимума он достигает при нагрузках около 80% мощности.

Достигает он пикового значения быстро и уверенно, но после своего максимума начинает медленно уменьшаться. Это связывают с возрастанием электрических потерь при нагрузках, более 80% от номинальной мощности. Падение коэффициента полезного действия не велико, что позволяет говорить о высоких показателях эффективности электродвигателей в широком диапазоне мощностей.

В чем измеряется КПД

Коэффициент полезного действия (кпд), характеристика эффективности системы (устройства, машины) в отношении преобразования или передачи энергии; определяется отношением полезно использованной энергии к суммарному количеству энергии, полученному системой; обозначается обычно h = Wпол/Wcyм.

В электрических двигателях кпд — отношение совершаемой (полезной) механической работы к электрической энергии, получаемой от источника; в тепловых двигателях — отношение полезной механической работы к затрачиваемому количеству теплоты; в электрических трансформаторах — отношение электромагнитной энергии, получаемой во вторичной обмотке, к энергии, потребляемой первичной обмоткой.

Интересно почитать: Как образуется статическое электричество.

Для вычисления кпд разные виды энергии и механическая работа выражаются в одинаковых единицах на основе механического эквивалента теплоты, и др. аналогичных соотношений. В силу своей общности понятие кпд позволяет сравнивать и оценивать с единой точки зрения такие различные системы, как атомные реакторы, электрические генераторы и двигатели, теплоэнергетические установки, полупроводниковые приборы, биологические объекты и т. д.

Из-за неизбежных потерь энергии на трение, на нагревание окружающих тел и т. п. кпд всегда меньше единицы. Соответственно этому кпд выражается в долях затрачиваемой энергии, т. е. в виде правильной дроби или в процентах, и является безразмерной величиной. Кпд тепловых электростанций достигает 35—40%, двигателей внутреннего сгорания — 40—50%, динамомашин и генераторов большой мощности—95%, трансформаторов—98%.

В чем измеряется КПД.

В чем измеряется КПД.

Кпд процесса фотосинтеза составляет обычно 6—8%, у хлореллы он достигает 20—25%. У тепловых двигателей в силу второго начала термодинамики кпд имеет верхний предел, определяемый особенностями термодинамического цикла (кругового процесса), который совершает рабочее вещество. Наибольшим кпд обладает Карно цикл. Различают кпд отдельного элемента (ступени) машины или устройства и кпд, характеризующий всю цепь преобразований энергии в системе. Кпд первого типа в соответствии с характером преобразования энергии может быть механическим, термическим и т. д. Ко второму типу относятся общий, экономический, технический и др. виды кпд. Общий кпд системы равен произведению частных кпд, или кпд ступеней.

В технической литературе кпд иногда определяют т. о., что он может оказаться больше единицы. Подобная ситуация возникает, если определять кпд отношением Wпол/Wзатр, где Wпол — используемая энергия, получаемая на «выходе» системы, Wзатр — не вся энергия, поступающая в систему, а лишь та её часть, для получения которой производятся реальные затраты.

Например, при работе полупроводниковых термоэлектрических обогревателей (тепловых насосов) затрата электроэнергии меньше количества теплоты, выделяемой термоэлементом. Избыток энергии черпается из окружающей среды. При этом, хотя истинный кпд установки меньше единицы, рассмотренный кпд h = Wпол/Wзатр может оказаться больше единицы.

Примеры расчета КПД.

Примеры расчета КПД.

Для чего нужен расчет КПД

Коэффициент полезного действия электрической цепи – это отношение полезного тепла к полному. Для ясности приведем пример. При нахождении КПД двигателя можно определить, оправдывает ли его основная функция работы затраты потребляемого электричества. То есть его расчет даст ясную картину, насколько хорошо устройство преобразовывает получаемую энергию. Обратите внимание! Как правило, коэффициент полезного действия не имеет величины, а представляет собой процентное соотношение либо числовой эквивалент от 0 до 1. КПД находят по общей формуле вычисления, для всех устройств в целом. Но чтобы получить его результат в электрической цепи, вначале потребуется найти силу электричества.

По физике известно, что любой генератор тока имеет свое сопротивление, которое еще принято называть внутренняя мощность. Помимо этого значения, источник электричества также имеет свою силу. Дадим значения каждому элементу цепи: сопротивление – r; сила тока – Е; резистор (внешняя нагрузка) – R. Полная цепь Итак, чтобы найти силу тока, обозначение которого будет – I, и напряжение на резисторе – U, потребуется время – t, с прохождением заряда q = lt. Рассчитать работу источника тока можно по следующей формуле: A = Eq = EIt. В связи с тем, что сила электричества постоянна, работа генератора целиком преобразуется в тепло, выделяемое на R и r. Такое количество можно рассчитать по закону Джоуля-Ленца: Q = I2 + I2 rt = I2 (R + r) t.

Формулы расчета КПД.

Формулы расчета КПД.

Затем приравниваются правые части формулы: EIt = I2 (R + r) t. Осуществив сокращение, получается расчет: E = I(R + r). Произведя у формулы перестановку, в итоге получается: I = E R + r. Данное итоговое значение будет являться электрической силой в данном устройстве. Произведя таким образом предварительный расчет, теперь можно определить КПД.

Расчет КПД электрической цепи Мощность, получаемая от источника тока, называется потребляемой, определение ее записывается – P1. Если эта физическая величина переходит от генератора в полную цепь, она считается полезной и записывается – Р2. Чтобы определить КПД цепи, необходимо вспомнить закон сохранения энергии.

В соответствии с ним, мощность приемника Р2 будет всегда меньше потребляемой мощности Р1. Это объясняется тем, что в процессе работы в приемнике всегда происходит неизбежная пустая трата преобразуемой энергии, которая расходуется на нагревание проводов, их оболочки, вихревых токов и т.д. Чтобы найти оценку свойств превращения энергии, необходим КПД, который будет равен отношению мощностей Р2 и Р1.

Что такое коэффициент полезного действия (КПД) и как рассчитать его по формуле

Итак, зная все значения показателей, составляющих электроцепи, находим ее полезную и полную работу: А полезная. = qU = IUt =I2Rt; А полная = qE = IEt = I2(R+r)t. В соответствии этих значений, найдем мощности источника тока: Р2 = А полезная /t = IU = I2 R; P1 = А полная /t = IE = I2 (R + r). Произведя все действия, получаем формулу КПД: n = А полезная / А полная = Р2 / P1 =U / E = R / (R +r). У этой формулы получается, что R выше бесконечности, а n выше 1, но при всем этом ток в цепи остается в низком положении, и его полезная мощность мала.

Каждый желает найти КПД повышенного значения. Для этого необходимо найти условия, при которых P2 будет максимален. Оптимальные значения будут: dP2 / dR = 0. Далее определить КПД можно формулами: P2 = I2 R = (E / R + r)2 R; dP2 / dR = (E2 (R + r)2 — 2 (r + R) E2 R) / (R + r)4 = 0; E2 ((R + r) -2R) = 0. В данном выражении Е и (R + r) не равны 0, следовательно, ему равно выражение в скобках, то есть (r = R). Тогда получается, что мощность имеет максимальное значение, а коэффициент полезного действия = 50 %. Как видно, найти коэффициент полезного действия электрической цепи можно самостоятельно, не прибегая к услугам специалиста. Главное –соблюдать последовательность в расчетах и не выходить за рамки приведенных формул.

Примеры расчета КПД

Пример 1. Нужно рассчитать коэффициент для классического камина. Дано: удельная теплота сгорания березовых дров – 107Дж/кг, количество дров – 8 кг. После сгорания дров температура в комнате повысилась на 20 градусов. Удельная теплоемкость кубометра воздуха – 1,3 кДж/ кг*град. Общая кубатура комнаты – 75 кубометров.

Чтобы решить задачу, нужно найти частное или отношение двух величин. В числителе будет количество теплоты, которое получил воздух в комнате (1300Дж*75*20=1950 кДж ). В знаменателе – количество теплоты, выделенное дровами при горении (10000000Дж*8 =8*107 кДж). После подсчетов получаем, что энергоэффективность дровяного камина – около 2,5%. Действительно, современная теория об устройстве печей и каминов говорит, что классическая конструкция не является энергоэффективной. Это связано с тем, что труба напрямую выводит горячий воздух в атмосферу.

Для повышения эффективности устраивают дымоход с каналами, где воздух сначала отдает тепло кладке каналов, и лишь потом выходит наружу. Но справедливости ради, нужно отметить, что в процессе горения камина нагревается не только воздух, но и предметы в комнате, а часть тепла выходит наружу через элементы, плохо теплоизолированные – окна, двери и т.д.

Расчет коэффициента полезного действия.

Пример 2. Автомобиль проделал путь 100 км. Вес машины с пассажирами и багажом – 1400 кг. При этом было затрачено14 литров бензина. Найти: КПД двигателя.

Для решения задачи необходимо отношение работы по перемещению груза к количеству тепла, выделившемуся при сгорании топлива. Количество тепла также измеряется в Джоулях, поэтому не придется приводить к другим единицам. A будет равна произведению силы на путь( A=F*S=m*g*S). Сила равна произведению массы на ускорение свободного падения. Полезная работа = 1400 кг x 9,8м/с2 x 100000м=1,37*108 Дж

Удельная теплота сгорания бензина – 46 МДж/кг=46000 кДж/кг. Восемь литров бензина будем считать примерно равными 8 кг. Тепла выделилось 46*106*14=6.44*108 Дж. В результате получаем η ≈21%.

Почему коэффициент полезного действия всегда меньше 100%?

КПД 100% означает, что вся энергия, затраченная на получение мощности двигателя, используется им в работе. В природе такого, в принципе, никогда не бывает, и поэтому КПД всех двигателей всегда меньше 100 процентов.

Как повысить коэффициент полезного действия механизма?

КПД механизмов можно увеличить, снижая трение в подвижных узлах и вес всех составных элементов конструкции. Для этого нужны новые смазочные вещества и лёгкие, но прочные конструкционные материалы.

Чему равен коэффициент полезного действия неподвижного блока?

Например, поднимая груз с помощью подвижного блока, приходится вместе с грузом поднимать и блок, а при этом необходимо совершать «дополнительную» работу. Отношение полезной работы Апол к совершенной Асов, выраженное в процентах, обозначают η и называют коэффициентом полезного действия (КПД): η = Апол/Асов · 100%.

Заключение

Лагутин Виталий Сергеевич

Инженер по специальности “Программное обеспечение вычислительной техники и автоматизированных систем”, МИФИ, 2005–2010 гг.

Задать вопрос

Коэффициент полезного действия – величина безразмерная, то есть не нужно ставить какую-либо единицу измерения. Но эту величину можно выразить и в процентах. Для этого полученное в результате деления по формуле число необходимо умножить на 100%. В школьном курсе математики рассказывали, что процент – этот одна сотая чего-либо. Умножая на 100 процентов, мы показываем, сколько в числе сотых.

Дополнительную информацию по данной теме можно узнать из файла «Способы определения коэффициента полезного действия». А также в нашей группе ВК публикуются интересные материалы, с которыми вы можете познакомиться первыми. Для этого приглашаем читателей подписаться и вступить в группу.

www.gk-drawing.ru

www.femto.com.ua

www.cable.ru

www.booksite.ru

www.elquanta.ru

www.remont220.ru

www.el-info.ru

Предыдущая

ТеорияЧто такое электрическое поле: объяснение простыми словам

Следующая

ТеорияПравила безопасности при работе с электричеством

Источник