Коэффициент полезного действия котла и расход топлива

Коэффициент полезного действия котла и расход топлива thumbnail

Что такое кпд котла

Коэффициентом полезного действия отопительного котла называют отношение полезной теплоты, израсходованной на выработку пара (или горячей воды), к располагаемой теплоте отопительного котла. Не вся полезная теплота, выработанная котельным агрегатом, направляется потребителям, часть теплоты расходуется на собственные нужды. С учетом этого различают КПД отопительного котла по выработанной теплоте (КПД-брутто) и по отпущенной теплоте (КПД-нетто).

По разности выработанной и отпущенной теплот определяется расход на собственные нужды. На собственные нужды расходуется не только теплота, но и электрическая энергия (например, на привод дымососа, вентилятора, питательных насосов, механизмов топливоподачи), т.е. расход на собственные нужды включает в себя расход всех видов энергии, затраченных на производство пара или горячей воды.

* Чтобы купить котел Уникал заходите в соответствующий раздел. А если нужны отопительные котлы оптом, то переходите сюда.

Как рассчитать кпд котла

В итоге КПД-брутто отопительного котла характеризует степень его технического совершенства, а КПД-нетто – коммерческую экономичность. Для котельного агрегата КПД-брутто, %:
по уравнению прямого баланса:

ηбр = 100 Qпол / Qрр

где Qпол – количество полезно используемой теплоты, МДж/кг; Qрр – располагаемая теплота, МДж/кг;

по уравнению обратного баланса:

ηбр = 100 – (q2 + q3 + q4 + q5 + q6),

где q – потери тепла в %:

  • q2 – с уходящими газами;
  • q3 – из-за химического недожога горючих газов (СО, Н2, СН4);
  • q4 – с механическим недожогом;
  • q5 – от наружного охлаждения;
  • q6 – c физическим теплом шлаков.

Тогда КПД-нетто отопительного котла по уравнению обратного баланса

ηнетто = ηбр – qс.н

где qс.н – расход энергии на собственные нужды, %.

Определение КПД по уравнению прямого баланса проводят преимущественно при отчетности за отдельный период (декада, месяц), а по уравнению обратного баланса – при испытании отопительного котла. Вычисление КПД отопительного котла по обратному балансу значительно точнее, так как погрешности при измерении потерь теплоты меньше, чем при определении расхода топлива.

Как увеличить кпд газового котла своими руками

Создать правильные условия эксплуатации газового котла и тем самым повысить коэффициент полезного действия можно реально, не вызывая специалиста, то есть своими руками. Что для этого нужно сделать?

  1. Отрегулировать заслонку поддувала. Это можно сделать экспериментальным путем, найдя, при какой позиции температура теплоносителя будет выше всего. Контроль проводите по термометру, установленному в корпусе котла.
  2. Обязательно следить, чтобы трубы системы отопления не зарастали изнутри, чтобы на них не образовывалась накипь и грязевые отложения. С пластиковыми трубами сегодня стало проще, их качество известно. И все же специалисты рекомендуют периодически продувать систему отопления.
  3. Следить за качеством дымохода. Нельзя допускать его засорение и налипания на стенки сажи. Все это приводит к суживанию сечения отводящей трубы и уменьшению тяги котла.
  4. Обязательное условие – чистка камеры сгорания. Конечно, газ не сильно коптит, как дрова или уголь, но стоит хотя бы один раз в три года мыть топку, очищая ее от сажи.
  5. Специалисты рекомендуют снизить тягу дымохода в самое холодное время года. Для этого можно использовать специальное устройство – ограничитель тяги. Устанавливается он на самом верхнем краю дымохода и регулирует сечение самой трубы.
  6. Снизить химические тепловые потери. Здесь два варианта, чтобы добиться оптимального значения: установить ограничитель тяги (уже выше было об этом сказано) и сразу после установки газового котла провести грамотную настройку оборудования. Рекомендуем это поручить специалисту.
  7. Можно установить турбулизатор. Это специальные пластины, которые устанавливаются между топкой       и теплообменником. Они увеличивают площадь отбора тепловой энергии.

Источник

Теплота, выделяющаяся при сгорании топлива, не может быть полностью использована для производства пара или горячей воды, часть теплоты неизбежно теряется, рассеиваясь в окружающей среде. Тепловой баланс котлоагрегата представляет собой специфическую формулировку закона сохранения энергии, утверждающего равенство количества теплоты, вносимой в котельный агрегат, и теплоты, затраченной на производство пара или горячей воды с учетом потерь. В соответствии с «Нормативным методом» [15] все величины, входящие в тепловой баланс, рассчитываются на 1 кг сгоревшего топлива. Приходная часть теплового баланса называется располагаемой теплотой:

где Q- — низшая теплота сгорания топлива, кДж/кг; cTtT — физическая теплота топлива (ст — теплоемкость топлива, /т — температура топлива), кДж/кг; QB — теплота воздуха, поступающего в топку при подогреве его вне агрегата, кДж/кг; Qn — теплота, вносимая в котельный агрегат с паром, используемым для распыливания мазута, наружной обдувки поверхностей нагрева или подачи под решетку при слоевом сжигании, кДж/кг.

При использовании газообразного топлива расчет выполняется относительно 1 м3 сухого газа при нормальных условиях.

Физическая теплота топлива играет существенную роль только при предварительном подогреве топлива вне котлоагрегата. Например, мазут перед подачей к горелкам подогревают, поскольку он имеет большую вязкость при низкой температуре.

Теплота воздуха, кДж/ (кг топл.):

где ат — коэффициент избытка воздуха в топке; V0H — теоретически необходимое количество воздуха, н.м3/кг; св — изобарная теплоемкость воздуха, кДж/(н.м3 К); /х в — температура холодного воздуха, °С; tB — температура воздуха на входе в топку, °С.

Теплота, вносимая с паром, кДжДкгтопл.):

где Gn — удельный расход дутьевого пара (на распыливание мазута расходуется примерно 0,3 кг пара на 1 кг мазута); /п = 2750 кДж/кг — примерная величина энтальпии водяного пара при температуре уходящих из котлоагрегата продуктов сгорания (около 130 °С).

В приближенных расчетах принимают 0р~ Q? ввиду малости других составляющих уравнения (22.2).

Расходная часть теплового баланса состоит из полезно использованной теплоты (получение пара или горячей воды) суммы потерь, кДжДкгтопл.):

где 02 — потери теплоты с уходящими из котельного агрегата газами;

  • 03 — потери теплоты от химической неполноты сгорания топлива;
  • 04 — потери теплоты от механической неполноты сгорания топлива;
  • 05 — потери теплоты через обмуровку в окружающую среду; 06 — потери с физической теплотой шлака, удаляемого из котельного агрегата.

Уравнение теплового баланса записывается в виде

В процентах от располагаемой теплоты уравнение (22.6) можно записать:

Полезно использованная теплота в паровом котле с непрерывной продувкой верхнего барабана определяется по уравнению, кДжДкгтопл.):

где D — паропроизводительность котла, кг/с; Dnp — расход продувочной воды кг/с; В — расход топлива, кг/с; /п, /п в, /к в — энтальпия пара, питательной и котловой воды при давлении в котле соответственно, кДж/кг.

Потери теплоты с уходящими газами, кДж/(кг топл.):

где сг и св — изобарная теплоемкость продуктов сгорания и воздуха, кДж/(н.м3 К); г — температура уходящих газов, °С; аух — коэффициент избытка воздуха на выходе газов из котлоагрегата; К0Г и V0 — теоретический объем продуктов сгорания и теоретически необходимое количество воздуха, н.м3/(кгтопл.).

В газоходах котлоагрегата поддерживается разрежение, объемы газов при их движении по газовому тракту котла возрастают из-за присосов воздуха через неплотности в обмуровке котла. Поэтому действительный коэффициент избытка воздуха на выходе из котлоагрегата аух больше коэффициента избытка воздуха в топке а. Он определяется суммированием коэффициента избытка воздуха в топке и присосов воздуха во всех газоходах. В практике эксплуатации котельных установок необходимо стремиться к уменьшению присосов воздуха в газоходах как к одному из наиболее эффективных средств борьбы с потерями теплоты.

Таким образом, величина потери Q2 определяется температурой уходящих газов и величиной коэффициента избытка воздуха аух. В современных котлах температура газов за котлом не опускается ниже 110 °С. Дальнейшее уменьшение температуры приводит к конн денсации содержащихся в газах паров воды и образованию при сжигании серосодержащего топлива серной кислоты, что ускоряет коррозию металлических поверхностей газового тракта. Минимальные потери с уходящими газами составляют q2 ~ 6—7%.

Потери от химической и механической неполноты сгорания являются характеристиками топочных устройств (см. п. 21.1). Их величина зависит от вида топлива и способа сжигания, а также от совершенства организации процесса горения. Потери от химической неполноты сгорания в современных топках составляют q3 = 0,5—5%, от механической — q4 = 0—13,5%.

Потери теплоты в окружающую среду q5 зависят от мощности котла. Чем выше мощность, тем меньше относительная величина потери q5. Так, при паропроизводительности котлоагрегата D= 1 кг/с потерь составляют 2,8%, при D= 10 кг/с q5~ 1%.

Потери теплоты с физической теплотой шлака qb невелики и обычно учитываются при составлении точного теплового баланса, %:

где ашл = 1 – аун; аун — доля золы в дымовых газах; сшл и ?шл — теплоемкость и температура шлака; Аг — зольность рабочего состояния топлива.

Коэффициентом полезного действия (КПД) котлоагрегата называют отношение полезно использованной теплоты сгорания 1 кг топлива на получение пара в паровых котлах или горячей воды в водогрейных к располагаемой теплоте.

КПД котлоагрегата, %:

или

КПД котлоагрегатов существенно зависит от вида топлива, способа сжигания, температуры уходящих газов и мощности. Паровые котлы, работающие на жидком или газообразном топливе, имеют КПД 90—92%. При слоевом сжигании твердого топлива КПД равняется 70—85%. Необходимо отметить, что КПД котлоагрегатов существенно зависит от качества эксплуатации, особенно от организации топочного процесса. Работа котлоагрегата с давлением пара и производительностью меньше номинальных снижает КПД. В процессе эксплуатации котлов периодически должны проводиться теплотехнические испытания с целью определения потерь и действительного КПД котла, что позволяет внести необходимые коррективы в режим его работы.

Расход топлива для парового котла (кг/с — для твердого и жидкого топлива; н.м3/с — газообразного)

где D — паропроизводительность котлоагрегата, кг/с; /п, /п в, /к в — энтальпия пара, питательной и котловой воды соответственно, кДж/кг; Qp — располагаемая теплота, кДж/(кг топл.) — для твердого и жидкого топлива, кДж/(н.м3) — для газообразного топлива (часто в расчетах принимают Qp ~ Q- ввиду их незначительного различия); П — величина непрерывной продувки, % от паропроизводитель- ности; г|ка — КПД колоагрегата, доли.

Расход топлива для водогрейного котла (кг/с; н.м3/с):

где Св — расход воды, кг/с; /,, /2 — начальная и конечная энтальпии воды в котле, кДж/кг.

Источник

Как посчитать тепловую мощность

Формулу для расчёта тепловой мощности в гКал/час можно представить в виде:

Q = (T1 – T2) * 40(м3/час) / 1000, где T1 – Т2 – разность
температур в градусах Цельсия.

Таким образом, для того чтобы посчитать мощность, которую выдаёт котельная, необходимо расход воды умножить на
разность температур (перепад между «подачей» и «обраткой») и разделить на 1000. У Вас получится мощность в
гигакаллориях (ГКал).

Пример 1:

  • Температура воды на «подаче» (из котельной в тепловую сеть) – 55 °С
  • Температура воды на «обратке» (из тепловой сети в котельную) – 43 °С
  • Расход сетевой воды – 120 м3/час (по насосам)
  • (55 – 43) * 120 / 1000 = 1.44 ГКал. * 1.16 = 1.67 МВт

Пример 2:

  • Температура воды на входе в котёл – 43 °С
  • Температура на выходе из котла – 51 °С
  • Расход воды в котле – 40 м3/час
  • (51 – 43) * 40 / 1000 = 0.32 ГКал * 1.16 = 0.37 МВт

Как посчитать КПД котла.

Формулу для расчёта КПД котла можно представить в виде:

КПД = 100 – q2-q3-q4-q5-q6, где q2…q6 –
тепловые потери котла.

Для того чтобы посчитать КПД котла необходимо температуру уходящих газов котла (измеряется термометром на газоходе
котла) разделить на 15 ( с понижением температуры уходящих газов на 12-15С, потери теплоты уменьшаются на 1%),
прибавить 2 (потери с химическим недожогом в слоевой топке 0,5-3%), прибавить 3 (потери с механическим недожогом в
слоевой топке 1-5%), прибавить 2 (сумма остальных потерь). Полученное значение – ориентировочная величина потерь КПД
в процентах, вне зависимости от вида топлива и мощности котла.

Пример 3:

  • Температура уходящих газов котла – 320 °C
  • 320 / 15 + 2 + 3 + 2 = 29,3% – суммарные потери КПД (q2…q6)
  • 100 – 29,3 = 70,1% – КПД котла

Из чего складываются потери КПД котла

Потери тепла с уходящими газами – q2 – составляют самую большую величину тепловых потерь котла. В
современном котле величина потерь – q2 – находится в пределах 10 – 12%, при работе котла на номинальной
нагрузке.

Потери тепла с химическим недожогом – q3 – возникает из-за неполного сгорания летучих компонентов топлива
в топке котла. Причинами появления химического недожога могут быть: плохое смесеобразование, общий недостаток
воздуха, низкая температура в топочном объёме котла, особенно в зоне догорания(верхняя часть топочного объёма). При
достаточном коэффициенте избытка воздуха и хорошем смесеобразовании, химический недожог – зависит от теплонапряжения
в топочном объёме (объём топки / мощность котла). В современном котле со слоевой топкой, при значениях
теплонапряжения – qv = 0.23 – 0.45 МВт/м3, химический недожог составляет 0.5 – 2%, при увеличении qv (с 0.45 до
0.7), химический недожог резко возрастает и достигает 5%.

Потери тепла с механическим недожогом – q4 – сумма потерь теплоты с уносом, шлаком и провалом. Для
слоевых топок величина потерь с уносом зависит от теплонапряжения(читай выдаваемая мощность) в топочном объёме (МВт)
отнесённого к площади зеркала горения (qv / площадь решётки = qr ). С увеличением qr (т.е. с форсировкой котла),
резко увеличивается доля несгоревшего топлива уносимого с продуктами сгорания (потери с уносом). Так, с увеличением
qr с 0.93 до 1.63 (в 1.7 раза) величина потерь с уносом возрастает с 3 до 21% (в 7 раз). Потери теплоты со шлаком,
возрастают, с увеличением зольности топлива и ростом теплонапряжения. Потери теплоты с провалом зависят от
спекаемости топлива, содержания в топлива мелочи и от конструкции колосниковой решётки. При использовании
охлаждаемой уголковой решётки потери теплоты с провалом не превышают 0.5%. В современном котле со слоевой топкой
потери тепла с механическим недожогом – q4 – составляют 1-5%.

Потери тепла от наружного охлаждения – q5 – наблюдаются в связи с тем, что температура наружной
поверхности котла всегда выше температуры окружающей среды. Котёл в лёгкой обмуровке имеет величину потерь –
q5 – в пределах 0.5%

Прочие потери тепла – q6 – сумма потерь с физической теплотой шлака, на охлаждение панелей и балок, не
включённых в циркуляционную систему котла – как правило, не превышают 0.5-2%

Как увеличить КПД котла

Очевидный способ увеличения КПД – снижение потерь с теплом уходящих газов (q2).

Пример 4:

Рассмотрим котёл №1 и котёл №2, номинальной мощностью 0.5 ГКал/час каждый, топливо уголь (5000кКал), имеющих разную
температуру уходящих газов:

  • Температура уходящих газов котла №1 – 380 °С, котла №2 – 190 °С
  • Расход сетевой воды на каждом из котле №1,2 – 20 м3/час.
  • Перепад температур на входе / выходе воды из котла №1,2 – 25 °С.

Котёл №1 – Вычисляем:

  • Мощность(ГКал/ч) 20 * 25 / 1000 = 0.5 ГКал/ч.
  • Потери КПД (%) 380 / 15 + 2 + 3 + 2 = 32.3% (q2…q6)
  • КПД котла(%) 100 – 32,3 = 67.7%
  • Расход топлива (кг/ч) 0.5 / (5000*67.7) * 108 = 147,7

Котёл №2 – Вычисляем:

  • Мощность(ГКал/ч) 20 * 25 / 1000 = 0.5 ГКал/ч.
  • Потери КПД (%) 190 / 15 + 2 + 3 + 2 = 19.6% (q2…q6)
  • КПД котла(%) 100 – 19,6 = 80.4%
  • Расход топлива (кг/ч) 0.5 / (5000*80.4)* 108 = 120

Сравнивая КПД котлов и расход топлива, делаем вывод:

  • Снижение температуры уходящих газов котла №1 с 380 до 190, приведёт к увеличению его КПД на 12.7%, и сокращению
    расхода угля на 18.7%.
  • Один из вариантов снижения температуры уходящих газов – установка экономайзера.

Источник

Коэффициент Полезного Действия (КПД) – показатель эффективности системы при преобразовании одного вида энергии в другой и передачи этой энергии на расстояние. Термин «система», в нашем случае, означает комплекс оборудования для пароснабжения предприятия (паровая котельная + пароконденсатная система предприятия).

В таблице 1 перечислим факторы, влияющие на эффективность пароснабжения промышленных предприятий в части теплотехники. Но при этом надо понимать, что в топливных котельных существуют значительные затраты на электроэнергию (насосы, вентиляторы) которую так же необходимо принимать в расчёт при определении общего КПД системы.

Таблица 1. Факторы, влияющие на КПД системы пароснабжения предприятия

Фактор

Примечание

1.

Конструкция котла

Данные по КПД котла предоставляет производитель.

Производитель предоставляет данные по КПД, замеренные в идеальных условиях при установившемся режиме горения, определённой температуре питательной воды, без учёта продувок. На производстве, обычно, условия несколько различаются с идеальными.

Вносить самостоятельные изменения в конструкцию котла – категорически недопустимо. Для лучшей эффективности работы котла необходимо следовать рекомендациям завода-производителя.

2.

Температура дымовых газов (наличие экономайзера)

КПД современных паровых котлов достигает 93%. При этом температура дымовых газов составляет ~ 200ºС.

Способы повышения КПД:

Рекомендуется установить экономайзер, который будет нагревать воду за счёт охлаждения дымовых газов. В зависимости от условий на производстве можно нагревать питательную воду, воду для ГВС на предприятии, воду для какого-нибудь технологического процесса. При использовании экономайзера КПД котлоагрегата можно повысить до 99%.

3.

Горелка котла

1. В задачу горелочного устройства входит приготовление качественной топливной смеси (топливо-воздух) и качественное распыление топлива в топке котла. Для высокого КПД нужна качественная и надёжная горелка.

2. Горелки бывают ступенчатыми и модулируемыми. При применении ступенчатой горелки происходит более частые включения-отключения котла, а перед каждым вкл.-выкл. необходимо вентилирование топки котла – нагретые дымовые газы «вылетают в трубу», что так же снижает КПД системы. Модулируемая горелка способна работать в режиме 15…100% производительности котла, что может значительно снизить количество вкл.-выкл.

4.

График паропотребления

Влияние графика паропотребления на КПД зависит от применяемой горелки (смотри п.2). Если расход пара постоянен и ступенчатая горелка постоянно работает – КПД будет максимальным. При часто меняющемся потреблении пара рекомендуется использовать модулируемую горелку.

5.

Температура питательной воды

Чем ниже температура питательной воды, тем выше температурный напор и эффективней идёт процесс теплообмена – выше КПД котла, но БОЛЬШЕ РАСХОД ТОПЛИВА.

Этот тот момент, когда КПД надо пренебречь, потому как нагретая питательная вода хоть и уменьшает КПД котлоагрегата (не путать с КПД системы – он увеличивается), но тепла для догрева воды до рабочей температуры надо меньше, соответственно расход топлива уменьшается.

Способы увеличения температуры питательной воды:

1. Увеличить температуру питательной воды можно за счёт её нагрева от другого технологического процесса через теплообменник;

2. Применить экономайзер (смотри п.2);

3. Организовать возврат конденсата на производстве (смотри п.10).

6.

Качество питательной воды (метод водоподготовки)

Показатели, характеризующие качество питательной воды: жёсткость, щёлочность, общее солесодержание (TDS), содержание кремния, водородный показатель (pH), содержание коррозионных газов, взвешенные вещества.

Содержание (или концентрация) каждого из этих показателей должно находиться в определённых пределах. Для улучшения качества воды устанавливают водоподготовку. В зависимости от метода водоподготовки в воде так же могут содержаться вредные примеси, которые удаляются из котла методом периодической и непрерывной продувки. Т.о. чем больше в котле вредных примесей – тем чаще продувка, а вместе с вредными примесями сливается нагретая котловая вода – тепло улетает в трубу.

7.

Тип деаэрации

1. Термическая деаэрация. Подразумевает расход пара (тепла) на собственные нужды котельной;

2. Химическая деаэрация. Наиболее распространённым реагентом, применяемым в качестве химической деаэрации, является сульфит натрия (Na?SO?), при взаимодействии с растворённым кислородом в питательной воде, образует сульфат натрия (Na?SO?), который накапливается и повышает солесодержание в котле. Результат – увеличенное число продувок – тепло улетает в трубу.

Способы повышения КПД:

1. При термической деаэрации необходимо максимально теплоизолировать оборудование и трубопроводы системы деаэрации;

2. В химической деаэрации, я бы рассмотрел другие типы безопасных реагентов. Например, на основе диэтилгидроксиламин (DEHA), который не увеличивает солесодержания и обладает пассивирующими свойствами.

ВНИМАНИЕ!!! При смене реагента необходима консультация специалиста!

8.

Качество топлива

(наличие сажи в топке котла)

В первую очередь качество топлива влияет на состояние элементов горелки котла (форсунки, клапаны, топливный насос и т.д.), которая отвечает за качество сжигания топлива, которое напрямую влияет на потребление топлива.

Во-вторых, какое бы качественное топливо ни было, всегда образуется сажа, которая существенно снижает теплопередачу в котле. При использовании некачественного топлива количество сажи может быть увеличен в разы.

Способы повышения КПД:

1. Отслеживайте качество топлива. Особенно это относиться к ДТ и мазуту.

2. Периодические осмотры оборудования и качественный сервис обеспечит чистоту котловых труб и высокое КПД.

9.

Теплоизоляция оборудования котельной и пароконденсатной системы

В котельной и на всём протяжении пароконденсатной системы предприятия может находиться большое количество не теплоизолированного оборудования (теплообменники, задвижки, регулируемая арматура, конденсатоотводчики и т.д.). Открытые горячие поверхности приводят в значительным теплопотерям, что приводит к снижению КПД всей системы.

Способы повышения КПД:

Теплоизолируйте все нагреваемые поверхности.

В настоящий момент существует большой выбор теплоизолирующих кожухов для разного вида вышеперечисленного оборудования.

10.

Удалённость паропотребителя

При транспортировке пара на большие расстояния до потребителя возникают значительные потери тепла, пар конденсируется в паропроводе, возникают проблемы с отводом конденсата.

Способы повышения КПД:

Рекомендую рассмотреть вопрос об отказе от централизованного пароснабжения и организовать индивидуальное пароснабжение – устанавливать парогенераторы непосредственно у паропотребителя. В соответствии с СП89.13330.2016 (Пункт 8.23), паровые котлы BOOSTER разрешается устанавливать в производственных помещениях.

11.

Качество водоподготовки (наличие отложений в пароводяном тракте котла)

Режим работы любой водоподготовки зависит от настроек продолжительности рабочего режима и режима восстановления. Качество любой воды (водопровод, скважина и т.д.) может меняться в значительных пределах. Был реальный случай, когда по непонятным причинам в паровом котле, работающим на водопроводной воде, стали появляться отложения, несмотря на наличие правильно настроенной водоподготовки. Результат исследований показал, что у поставщика воды произошла авария и жёсткость воды увеличилась в 7 раз!!!!

Способы повышения КПД:

1. В первую очередь необходимо, в соответствии с инструкцией на паровые котлы, контролировать качество воды –  периодически брать химанализы питательной и котловой воды.

2. Необходимо постоянно контролировать состояние поверхностей пароводяного тракта.

3. Необходимо следить за правильной работой датчиков автоматической аварийной системы парового котла. При появлении отложений, датчиком температуры тела котла или дымовых газов должно быть зафиксирована повышенная температура. При повышении температуры до критического значения – котёл должен автоматически отключаться.

12.

Возврат конденсата

Конденсат – это вода, прошедшая водоподготовку и содержащая неиспользованную теплоту. Т.е. при возврате конденсата вы экономите на водоподготовке и на топливе для нагрева холодной питательной воды.  Например, для нагрева 1 тонны воды с 5 до 80 ºС необходимо 74000 ккал – это ~8 м³ природного газа или ~8 литров дизельного топлива.

13.

Тип непрерывной продувки

Существует два основных вида автоматической верхней продувки парового котла: продувка по времени и продувка по солесодержанию. Продувка по времени программируется на основании ранее сделанных химических анализов котловой воды и производиться через равный промежуток времени. Продувка по солесодержанию зависит от степени солесодержания котловой воды на данный момент времени и проводит продувку в нужный момент, снижая концентрацию солей в котловой воде на тот уровень, который необходим. Продувка по солесодержанию – качественней и точней!

14.

Утилизация теплоты от продувок

Продувка – это слив нагретой котловой воды, сопровождается потерей тепла. В зависимости от объёма продувок необходимо рассчитать и рассмотреть возможность и целесообразность применения системы утилизации тепла от продувок.

15.

Воздух для горения

Повышение температуры воздуха, направляемого на горение, увеличивает КПД котла. Например, в котлах BOOSTER горелка и котёл представляют собой моноблочную конструкцию и забор воздуха для горения происходит через наружные нагреваемые поверхности котла, что позволяет охлаждать корпус и нагревать воздух, направляемый на горение.

16.

Состояние системы автоматического управления котлом.

Большинство современных котлов оснащаются системой автоматики с помощью которой фиксируются температуры поверхностей и дымовых газов котла, выдавая информацию на пульт управления. При критическом превышении параметров система аварийной автоматики выдаёт сигнал на аварийное отключение котла. Необходимо, следить за исправностью системы автоматики и в случае превышения определённых параметров находить причину повлёкшую такое изменение. Возможные причины превышения температур: отложения солей жёсткости в пароводяном тракте котла, неправильная работа горелки, отложения сажи в газоходе котла, неисправность системы автоматики.

17.

Состояние пароконденсатной системы предприятия.

Правильно спроектированная и смонтированная пароконденсатная система – залог эффективного использования тепловой энергии. Здесь можно посмотреть общие рекомендации по организации пароконденсатной системы на предприятии.

Дополнительно настоятельно рекомендуется обеспечить постоянный надзор за исправностью конденсатоотводчиков на паропотребляющем оборудовании, т.к. большой процент потерь тепла происходит по причине неправильной работы этого оборудования.

18.

Своевременное сервисное обслуживание котельной и элементов пароконденсатной системы.

Данный пункт – это повторение большинства вышеперечисленных рекомендаций, призывающих проводить своевременные осмотры состояния оборудования и его сервисное обслуживание.

Здесь можно ознакомиться с рекомендациями по разработке системы планово-предупредительных ремонтов котельного оборудования и пароконденсатной системы.

В сегодняшних реалиях, одним из действительно эффективных методов повышения энергоэффективности крупных предприятий является отказ от централизованного пароснабжения и установкой парогенераторов непосредственно у паропотребляющего оборудования. Все плюсы и минусы организации индивидуального пароснабжения рассмотрим здесь.

Источник