Коэффициент полезного действия идеальной тепловой машины можно увеличить

Коэффициент полезного действия идеальной тепловой машины можно увеличить thumbnail

Современные реалии предполагают широкую эксплуатацию тепловых двигателей. Многочисленные попытки замены их на электродвигатели пока претерпевают неудачу. Проблемы, связанные с накоплением электроэнергии в автономных системах, решаются с большим трудом.

Все еще актуальны проблемы технологии изготовления аккумуляторов электроэнергии с учетом их длительного использования. Скоростные характеристики электромобилей далеки от таковых у авто на двигателях внутреннего сгорания.

Первые шаги по созданию гибридных двигателей позволяют существенно уменьшить вредные выбросы в мегаполисах, решая экологические проблемы.

Немного истории

кпд тепловых машин

Возможность превращения энергии пара в энергию движения была известна еще в древности. 130 год до нашей эры: Философ Герон Александрийский представил на суд зрителей паровую игрушку – эолипил. Сфера, заполненная паром, приходила во вращение под действием исходящих из нее струй. Этот прототип современных паровых турбин в те времена не нашел применения.

Долгие годы и века разработки философа считались лишь забавной игрушкой. В 1629 г. итальянец Д. Бранки создал активную турбину. Пар приводил в движение диск, снабженный лопатками.

С этого момента началось бурное развитие паровых машин.

Тепловая машина

кпд идеальной тепловой машины

Превращение внутренней энергии топлива в энергию движения частей машин и механизмов используется в тепловых машинах.

Основные части машин: нагреватель (система получения энергии извне), рабочее тело (совершает полезное действие), холодильник.

Нагреватель предназначен для того, чтобы рабочее тело накопило достаточный запас внутренней энергии для совершения полезной работы. Холодильник отводит излишки энергии.

Основной характеристикой эффективности называют КПД тепловых машин. Эта величина показывает, какая часть затраченной на нагревание энергии расходуется на совершение полезной работы. Чем выше КПД, тем выгоднее работа машины, но эта величина не может превышать 100%.

Расчет коэффициента полезного действия

Пусть нагреватель приобрел извне энергию, равную Q1. Рабочее тело совершило работу A, при этом энергия, отданная холодильнику, составила Q2.

Исходя из определения, рассчитаем величину КПД:

η= A / Q1. Учтем, что А = Q1 – Q2.

Отсюда КПД тепловой машины, формула которого имеет вид η= (Q1 – Q2)/ Q1 = 1 – Q2/ Q1, позволяет сделать следующие выводы:

  • КПД не может превышать 1 (или 100%);
  • для максимального увеличения этой величины необходимо либо повышение энергии, полученной от нагревателя, либо уменьшение энергии, отданной холодильнику;
  • увеличения энергии нагревателя добиваются изменением качества топлива;
  • уменьшения энергии, отданной холодильнику, позволяют добиться конструктивные особенности двигателей.

кпд тепловой машины формула

Идеальный тепловой двигатель

Возможно ли создание такого двигателя, коэффициент полезного действия которого был бы максимальным (в идеале – равным 100%)? Найти ответ на этот вопрос попытался французский физик-теоретик и талантливый инженер Сади Карно. В 1824 его теоретические выкладки о процессах, протекающих в газах, были обнародованы.

Основной идеей, заложенной в идеальной машине, можно считать проведение обратимых процессов с идеальным газом. Начинаем с расширения газа изотермически при температуре T1. Количество теплоты, необходимой для этого, – Q1. Послегаз без теплообмена расширяется (процесс адиабатный). Достигнув температуры Т2, газ сжимается изотермически, передавая холодильнику энергию Q2. Возвращение газа в первоначальное состояние производится адиабатно.

КПД идеального теплового двигателя Карно при точном расчете равен отношению разности температур нагревательного и охлаждающего устройств к температуре, которую имеет нагреватель. Выглядит это так: η=(T1 – Т2)/ T1.

Возможный КПД тепловой машины, формула которого имеет вид: η= 1- Т2/ T1, зависит только от значения температур нагревателя и охладителя и не может быть более 100%.

Более того, это соотношение позволяет доказать, что КПД тепловых машин может быть равен единице только при достижении холодильником абсолютного нуля температур. Как известно, это значение недостижимо.

Теоретические выкладки Карно позволяют определить максимальный КПД тепловой машины любой конструкции.

Доказанная Карно теорема звучит следующий образом. Произвольная тепловая машина ни при каких условиях не способна иметь коэффициент полезного действия больше аналогичного значения КПД идеальной тепловой машины.

тепловая машина кпд тепловой машины

Пример решения задач

Пример 1. Каков КПД идеальной тепловой машины, в случае если температура нагревателя составляет 800оС, а температура холодильника на 500оС ниже?

T1= 800оС= 1073 К, ∆T= 500оС=500 К, η – ?

Решение:

По определению: η=(T1 – Т2)/ T1.

Нам не дана температура холодильника, но ∆T= (T1 – Т2), отсюда:

η= ∆T / T1 = 500 К/1073 К = 0,46.

Ответ: КПД = 46%.

Пример 2. Определите КПД идеальной тепловой машины, если за счет приобретенного одного килоджоуля энергии нагревателя совершается полезная работа 650 Дж. Какова температура нагревателя тепловой машины, если температура охладителя – 400 К?

Q1 = 1 кДж=1000 Дж, А = 650 Дж, Т2 = 400 К, η – ?, T1 = ?

Решение:

В данной задаче речь идет о тепловой установке, КПД которой можно вычислить по формуле:

η= A / Q1.

Для определения температуры нагревателя воспользуемся формулой КПД идеальной тепловой машины:

η = (T1 – Т2)/ T1 = 1- Т2/ T1.

Выполнив математические преобразования, получим:

Т1 = Т2 /(1- η).

Т1 = Т2 /(1- A / Q1).

Вычислим:

η= 650 Дж/ 1000 Дж = 0,65.

Т1 = 400 К /(1- 650 Дж/ 1000 Дж) = 1142,8 К.

Ответ: η= 65%, Т1 = 1142,8 К.

Реальные условия

Идеальный тепловой двигатель разработан с учетом идеальных процессов. Работа совершается только в изотермических процессах, ее величина определяется как площадь, ограниченная графиком цикла Карно.

максимальный кпд тепловой машины

В действительности создать условия для протекания процесса изменения состояния газа без сопровождающих его изменений температуры невозможно. Нет таких материалов, которые исключили бы теплообмен с окружающими предметами. Адиабатный процесс осуществить становится невозможно. В случае теплообмена температура газа обязательно должна меняться.

КПД тепловых машин, созданных в реальных условиях, значительно отличаются от КПД идеальных двигателей. Заметим, что протекание процессов в реальных двигателях происходит настолько быстро, что варьирование внутренней тепловой энергии рабочего вещества в процессе изменения его объема не может быть скомпенсировано притоком количества теплоты от нагревателя и отдачей холодильнику.

Иные тепловые двигатели

Реальные двигатели работают на иных циклах:

  • цикл Отто: процесс при неизменном объеме меняется адиабатным, создавая замкнутый цикл;
  • цикл Дизеля: изобара, адиабата, изохора, адиабата;
  • газовая турбина: процесс, происходящий при постоянном давлении, сменяется адиабатным, замыкает цикл.

Создать равновесные процессы в реальных двигателях (чтобы приблизить их к идеальным) в условиях современной технологии не представляется возможным. КПД тепловых машин значительно ниже, даже с учетом тех же температурных режимов, что и в идеальной тепловой установке.

Но не стоит уменьшать роль расчетной формулы КПД цикла Карно, поскольку именно она становится точкой отсчета в процессе работы над повышением КПД реальных двигателей.

Читайте также:  Пошить что то нужное и полезное

Пути изменения КПД

Проводя сравнение идеальных и реальных тепловых двигателей, стоит отметить, что температура холодильника последних не может быть любой. Обычно холодильником считают атмосферу. Принять температуру атмосферы можно только в приближенных расчетах. Опыт показывает, что температура охладителя равна температуре отработанных в двигателях газов, как это происходит в двигателях внутреннего сгорания (сокращенно ДВС).

каков кпд идеальной тепловой машины

ДВС – наиболее распространенная в нашем мире тепловая машина. КПД тепловой машины в этом случае зависит от температуры, созданной сгорающим топливом. Существенным отличием ДВС от паровых машин является слияние функций нагревателя и рабочего тела устройства в воздушно-топливной смеси. Сгорая, смесь создает давление на подвижные части двигателя.

Повышения температуры рабочих газов достигают, существенно меняя свойства топлива. К сожалению, неограниченно это делать невозможно. Любой материал, из которого изготовлена камера сгорания двигателя, имеет свою температуру плавления. Теплостойкость таких материалов – основная характеристика двигателя, а также возможность существенно повлиять на КПД.

Значения КПД двигателей

Если рассмотреть паровую турбину, температура рабочего пара на входе которой равна 800 К, а отработавшего газа – 300 К, то КПД этой машины равно 62%. В действительности же эта величина не превышает 40%. Такое понижение возникает вследствие тепловых потерь при нагревании корпуса турбин.

определите кпд идеальной тепловой машины

Наибольшее значение КПД двигателей внутреннего сгорания не превышает 44%. Повышение этого значения – вопрос недалекого будущего. Изменение свойств материалов, топлива – это проблема, над которой работают лучшие умы человечества.

Источник

Естествознание, 11 класс

Урок 8. Законы термодинамики и КПД тепловых двигателей

Перечень вопросов, рассматриваемых в теме:

  • Чем ограничен КПД теплового двигателя.
  • Что такое идеальный тепловой двигатель.
  • Как вычислить КПД идеальной тепловой машины.

Аддитивность энтропии – энтропия системы равна сумме энтропий её частей.

Адиабата (адиабатный процесс) – это процесс, происходящий без теплообмена с окружающей средой

КПД теплового двигателя – это отношение полезной работы, совершенной данным двигателем, к количеству теплоты, полученному от нагревателя.

Вечный двигатель второго рода – это воображаемое неограниченно долго действующее устройство, позволяющее получать большее количество полезной работы, чем количество сообщённой ему извне энергии.

Идеальный тепловой двигатель – это такой двигатель, в котором все процессы могут быть проведены обратимым образом и так, что в каждый момент его состояние являлось бы равновесным.

Изотерма (изотермический процесс) – это процесс изменения состояния термодинамической системы макроскопических тел при постоянной температуре.

Тепловой двигатель – это тепловая машина, превращающая тепло в механическую энергию, использует зависимость теплового расширения вещества от температуры.

Энтропия – приведённое количество тепла, отнесённое к абсолютной температуре.

Основная и дополнительная литература по теме урока:

1.Естествознание. 11 класс [Текст]: учебник для общеобразоват. организаций: базовый уровень / И.Ю. Алексашина, К.В. Галактионов, А.В. Ляпцев и др. / под ред. И.Ю. Алексашиной. – 3-е изд., – М.: Просвещение, 2017.: с 53 -58.

2. Элементарный учебник физики под редакцией академика Г.С. Ландсберга. Том 2. Электричество и магнетизм.–12-е изд. – М.:ФИЗМАТЛИТ, 2001. – 480 с.

Теоретический материал для самостоятельного изучения

Человек в своей повседневной жизни очень часто встречается с физическими явлениями и законами. Неограниченными являются запасы внутренней энергии, которая находится в океанах и земной коре. Человек должен уметь использовать данную энергию, а именно за счёт энергии приводить в действия такие устройства, которые способны совершать работу.

Такие устройства принято называть тепловыми двигателями, которые способны превращать энергию в механическую энергию.

Ещё в III веке до нашей эры, Архимед построил пушку, которая стреляла с помощью пара.

Общие черты тепловых двигателей:

1) энергия топлива → механическая энергия.

Происходит превращение во внутреннюю энергию газа или пара, котрые нагреты до высокой температуры.

2) Необходимо наличие двух тел, которые обладают разными температурами (нагреватель и холодильник), а также рабочее тело (пар или газ).

При работе теплового двигателя рабочее тело забирает у нагревателя теплоту Q1 и превращает часть её в механическую энергию А, а ту часть теплоты, которая не перешла в энергию Q2 передает холодильнику. По закону сохранения и превращения энергии A=Q1-Q2

Необходимые условия для работы теплового двигателя:

Нагреватель;

Рабочее тело,

Холодильник.

Виды тепловых двигателей

Коэффициент полезного действия идеальной тепловой машины можно увеличить

Основной характеристикой тепловых двигателей является КПД, которое подчиняется первому и второму закону термодинамики (передача тепла происходит от более нагретого тела к менее нагретому).

Коэффициентом полезного действия – это отношение полезной работы, совершенной данным двигателем, к количеству теплоты, полученному от нагревателя. КПД выражают в процентах:

Коэффициент полезного действия идеальной тепловой машины можно увеличить

Коэффициент полезного действия идеальной тепловой машины можно увеличить

Qн – теплота, полученная от нагревателя, Дж

Qх – теплота, отданная холодильнику, Дж

Так как у всех двигателей некоторое количество теплоты передается холодильнику, то Т<l.

КПД теплового двигателя пропорционален разности температур нагревателя и холодильника. При Т1- Т2 = О двигатель не может работать.

Повышение КПД тепловых двигателей и приближение его к максимально возможному — важнейшая техническая задача.

Законы термодинамики позволяют вычислить максимально возможный КПД теплового двигателя, работающего с нагревателем, имеющим температуру Т1 и холодильником с температурой Т2.

Второй закон термодинамики – невозможно передать тепло от более холодного тела к более горячему так, чтобы в окружающей тела системе ничего не изменилось Данный закон запрещает существование вечного двигателя второго рода.

Рассмотрим схему работы теплового двигателя, предположив, что изображённая система замкнута.

Коэффициент полезного действия идеальной тепловой машины можно увеличить

Вычислим изменение энтропии всей системы за один цикл пользуясь свойствами энтропии:

– аддитивность энтропии

– энтропия является постоянной функцией

Получим уравнение суммарного изменения энтропии всей системы:

Коэффициент полезного действия идеальной тепловой машины можно увеличить

Третий закон термодинамики – невозможен процесс, в результате которого тело могло бы быть охлаждено до температуры абсолютного нуля.

В 19 веке в результате работ по теплотехнике французский инженер Сади рассмотрел гипотетический тепловой двигатель, соответствующий которому цикл, состоит из двух адиабат и двух изотерм. Впоследствии этот цикл был назван циклом Карно. Особенностью цикла Карно является то, что в отличие от других термодинамических циклов он может быть проведен обратимым образом. Это свойство обеспечивает максимальное значение КПД цикла Карно по отношению к другим циклам, работающим с тем же нагревателем и холодильником. Соответствующий тепловой двигатель был назван «идеальным тепловым двигателем». КПД такой идеальной машины может быть выражен следующим образом:

Читайте также:  Полезные свойства железа в организме человека

Коэффициент полезного действия идеальной тепловой машины можно увеличить

Тн – термодинамическая температура нагревателя, К

Тх – термодинамическая температура холодильника, К.

Главное значение этой формулы состоит в том, что любая реальная тепловая машина, работающая с нагревателем, имеющим температуру Тн, и холодильником с температурой Тх, не может иметь КПД, превышающий КПД идеальной тепловой машины. Не существует теплового двигателя, у которого КПД = 100% или 1.

Идеальная тепловая машина Карно работает по циклу состоящему из двух изотерм и двух адиабат.

Идеальный тепловой двигатель – это такой двигатель, в котором все процессы могут быть проведены обратимым образом и так, что в каждый момент его состояние являлось бы равновесным.

Современный мир не может обойтись без тепловых двигателей, так как благодаря им человечество имеет:

дешёвую электроэнергию;

двигатели для скоростного транспорта;

используются на тепловых электростанциях, приводят в движение роторы генераторов электрического тока;

установлены на всех АЭС для получения пара высокой температуры;

основные виды современного транспорта (на автомобильном- поршневые двигатели внутреннего сгорания; на водном- двигатели внутреннего сгорания и паровые турбины; на ж/д- тепловозы с дизельными установками; в авиации- поршневые, турбореактивные и реактивные двигатели).

Тепловые двигатели и охрана окружающей среды

Непрерывное развитие энергетики, развитие транспорта, возрастание потребления угля, нефти, газа в промышленности и на бытовые нужды приводит к тому, что количество ежегодно сжигаемого в тепловых двигателях химического топлива возрастает, что и приводит к сложной проблемеохрана природы от вредного влияния продуктов сгорания.

При сжигании топлива происходит следующее:

  1. используется кислород из атмосферы, а следовательно содержание кислорода в воздухе постоянно уменьшается.
  2. выделение в атмосферу углекислого газа, что приводит к парниковому эффекту.
  3. загрязнение атмосферы азотными и серными соединениями, которые оказывают вред флоре, фауне и здоровью человека.
  4. проблема захоронения радиоактивных отходов атомных станций.

Для охраны окружающей среды необходимо обеспечить:

  1. эффективную очистку выбрасываемых в атмосферу отработанных газов;
  2. использование качественного топлива и создания условий для полного его сгорания;
  3. повышение КПД тепловых двигателей за счет уменьшения потерь на трение и полного сгорания топлива и др.

В настоящее время рассматривается использование водорода в качестве горючего, так как при сгорании водорода образуется вода, также проводятся исследования по созданию электромобилей, которые в скором времени будут способны заменить автомобили с бензиновым двигателем.

Примеры и разбор решения заданий тренировочного модуля:

Задание 1. Тепловой двигатель за один цикл получает от нагревателя 100 кДж теплоты и отдает холодильнику 60 кДж. Чему равен КПД этого двигателя (%)?

а)60

б) 67

в) 40

г) 25

Ответ: B.

Задание 2. Расположите в хронологическом порядке появление тепловых двигателей:

Варианты ответов:

1. Дж. Уатт

2.Т. Севери

3. И. Ползунов

4. Д. Папен

Правильные варианты:

1.1698 год Т. Севери

2.1707 годД. Папен

3.1763 год И. Ползунов

4. 1774 год Дж. Уатт

Источник

Учебник по физике
10 класс

   
   

  • Из-за того что часть теплоты при работе тепловых двигателей неизбежно передается холодильнику, КПД двигателей не может равняться единице. Представляет большой интерес нахождение максимально возможного КПД теплового двигателя, работающего с нагревателем температуры Тг и холодильником температуры Т2. Впервые это сделал французский инженер и ученый Сади Карно.

Идеальная тепловая машина Карно

Карно придумал идеальную тепловую машину с идеальным газом в качестве рабочего тела. Все процессы в машине Карно рассматриваются как равновесные (обратимые).

В машине осуществляется круговой процесс или цикл, при котором система после ряда преобразований возвращается в исходное состояние. Цикл Карно состоит из двух изотерм и двух, адиабат (рис. 5.16). Кривые 1—2 и 3—4 — это изотермы, а 2—3 и 4—1 — адиабаты.

Коэффициент полезного действия идеальной тепловой машины можно увеличить

Рис. 5.16

Сначала газ расширяется изотермически при температуре T1. При этом он получает от нагревателя количество теплоты Q1. Затем он расширяется адиабатно и не обменивается теплотой с окружающими телами. Далее следует изотермическое сжатие газа при температуре Т2. Газ отдает в этом процессе холодильнику количество теплоты Q2. Наконец газ сжимается адиабатно и возвращается в начальное состояние.

При изотермическом расширении газ совершает работу А’1 > О, равную количеству теплоты Q1. При адиабатном расширении 2—3 положительная работа А’3 равна уменьшению внутренней энергии при охлаждении газа от температуры T1 до температуры Т2: А’3 = -ΔU12 = U(T1) – U (Т2).

Изотермическое сжатие при температуре Т2 требует совершения над газом работы А2. Газ совершает соответственно отрицательную работу А’2 = -А2 = Q2. Наконец, адиабатное сжатие требует совершения над газом работы А4 = ΔU21. Работа самого газа А’4 = -А4 = -ΔU21 = U(T2) – U(Т1). Поэтому суммарная работа газа при двух адиабатных процессах равна нулю. За цикл газ совершает работу

Коэффициент полезного действия идеальной тепловой машины можно увеличить

Эта работа численно равна площади фигуры, ограниченной кривой цикла (заштрихована на рис. 5.16).

Для вычисления коэффициента полезного действия нужно вычислить работы при изотермических процессах 1—2 и 3—4. Расчеты приводят к следующему результату:

Коэффициент полезного действия идеальной тепловой машины можно увеличить

Коэффициент полезного действия тепловой машины Карно равен отношению разности абсолютных температур нагревателя и холодильника к абсолютной температуре нагревателя.

Коэффициент полезного действия идеальной тепловой машины можно увеличить

Карно Никола Леонар Сади (1796— 1832) — талантливый французский инженер и физик, один из основателей термодинамики. В своем труде «Размышление о движущей силе огня и о машинах, способных развивать эту силу» (1824 г.) впервые показал, что тепловые двигатели могут совершать работу лишь в процессе перехода теплоты от горячего тела к холодному. Карно придумал идеальную тепловую машину, вычислил коэффициент полезного действия идеальной машины и доказал, что этот коэффициент является максимально возможным для любого реального теплового двигателя.

Можно выразить работу, совершаемую машиной за цикл, и количество отданной холодильнику теплоты Q2 через КПД машины и полученное от нагревателя количество теплоты Q1. Согласно определению КПД

Коэффициент полезного действия идеальной тепловой машины можно увеличить

Количество теплоты

Коэффициент полезного действия идеальной тепловой машины можно увеличить

Так как η < 1, то

Коэффициент полезного действия идеальной тепловой машины можно увеличить

Идеальная холодильная машина

Цикл Карно обратим, поэтому его можно провести в обратном направлении. Это будет уже не тепловая машина, а идеальная холодильная машина.

Процессы пойдут в обратном порядке. Работа А совершается для приведения в действие машины. Количество теплоты Q1 передается рабочим телом нагревателю более высокой температуры, а количество теплоты Q2 поступает к рабочему телу от холодильника (рис. 5.17). Теплота передается от холодного тела к горячему, поэтому машина и называется холодильной.

Читайте также:  Что самое полезное в пекинской капусты

Коэффициент полезного действия идеальной тепловой машины можно увеличить

Рис. 5.17

Но второму закону термодинамики это не противоречит: теплота переходит не сама собой, а за счет совершения работы.

Выразим количества теплоты Q1 и Q2 через работу А и КПД машины η. Так как согласно формуле (5.12.3) А’ = ηQ1 = -A, то

Коэффициент полезного действия идеальной тепловой машины можно увеличить

Передаваемое рабочим телом количество теплоты, как всегда, отрицательно. Очевидно, |Q1| = Коэффициент полезного действия идеальной тепловой машины можно увеличить. Согласно выражению (5.12.4) количество теплоты Q2 = Q1(η – 1) или с учетом соотношения (5.12.3)

Коэффициент полезного действия идеальной тепловой машины можно увеличить

Такое количество теплоты получает рабочее тело от холодильника.

Холодильная машина работает как тепловой насос(1). Горячему телу передается количество теплоты Q1, большее того количества, которое забирается от холодильника. Согласно формуле (5.12.7) Q2 = Коэффициент полезного действия идеальной тепловой машины можно увеличить – А = -Q1 – А. Отсюда

Коэффициент полезного действия идеальной тепловой машины можно увеличить

Эффективность холодильной машины определяется отношением ε = Коэффициент полезного действия идеальной тепловой машины можно увеличить, так как ее назначение отнимать как можно большее количество теплоты от охлаждаемой системы при совершении как можно меньшей работы. Величина ε называется холодильным коэффициентом. Для идеальной холодильной машины согласно формулам (5.12.7) и (5.12.2)

Коэффициент полезного действия идеальной тепловой машины можно увеличить

т. е. холодильный коэффициент тем больше, чем меньше разность температур, и тем меньше, чем меньше температура того тела, от которого отбирается теплота. Очевидно, холодильный коэффициент может быть больше единицы. Для реальных холодильников он более трех. Разновидностью холодильной машины является кондиционер, который забирает теплоту из комнаты и передает ее окружающему воздуху.

Тепловой насос

При отоплении помещений электрообогревателями энергетически выгоднее использовать тепловой насос, а не просто нагреваемую током спираль. Насос дополнительно будет передавать в помещение количество теплоты Q2 из окружающего воздуха. Однако это не делают из-за дороговизны холодильной установки по сравнению с обычной электрической печкой или камином.

При использовании теплового насоса практический интерес представляет количество теплоты Q1, получаемое нагреваемым телом, а не количество теплоты Q2, отдаваемое холодному телу. Поэтому характеристикой теплового насоса является так называемый отопительный коэффициент εот = Коэффициент полезного действия идеальной тепловой машины можно увеличить.

Для идеальной машины, учитывая соотношения (5.12.6) и (5.12.2), будем иметь

Коэффициент полезного действия идеальной тепловой машины можно увеличить

где Т1 — абсолютная температура нагреваемого помещения, а T2 — абсолютная температура атмосферного воздуха. Таким образом, отопительный коэффициент всегда больше единицы. Для реальных устройств при температуре окружающей среды t2 = 0 °С и температуре помещения t1 = 25 °С εот = 12. В помещение передается количество теплоты, почти в 12 раз превышающее количество затраченной электроэнергии.

Максимальный КПД тепловых машин (теорема Карно)

Главное значение полученной Карно формулы (5.12.2) для КПД идеальной машины состоит в том, что она определяет максимально возможный КПД любой тепловой машины.

Карно доказал, основываясь на втором законе термодинамики(2), следующую теорему: любая реальная тепловая машина, работающая с нагревателем температуры Т1 и холодильником температуры Т2, не может иметь коэффициент полезного действия, превышающий КПД идеальной тепловой машины.

Рассмотрим вначале тепловую машину, работающую по обратимому циклу с реальным газом. Цикл может быть любым, важно лишь, чтобы температуры нагревателя и холодильника были Т1 и Т2.

Допустим, что КПД другой тепловой машины (не работающей по циклу Карно) η’ > η. Машины работают с общим нагревателем и общим холодильником. Пусть машина Карно работает по обратному циклу (как холодильная машина), а другая машина — по прямому циклу (рис. 5.18).

Коэффициент полезного действия идеальной тепловой машины можно увеличить

Рис. 5.18

Тепловая машина совершает работу, равную согласно формулам (5.12.3) и (5.12.5)

Коэффициент полезного действия идеальной тепловой машины можно увеличить

Холодильную машину всегда можно сконструировать так, чтобы она брала от холодильника количество теплоты Q2 = |Q’2|.

Тогда согласно формуле (5.12.7) над ней будет совершаться работа

Коэффициент полезного действия идеальной тепловой машины можно увеличить

Так как по условию η’ > η, то А’ > А. Поэтому тепловая машина может привести в действие холодильную машину, да еще останется избыток работы. Эта избыточная работа совершается за счет теплоты, взятой от одного источника. Ведь холодильнику при действии сразу двух машин теплота не передается. Но это противоречит второму закону термодинамики.

Если допустить, что η > η’, то можно другую машину заставить работать по обратному циклу, а машину Карно — по прямому. Мы опять придем к противоречию со вторым законом термодинамики. Следовательно, две машины, работающие по обратимым циклам, имеют одинаковые КПД: η’ = η.

Иное дело, если вторая машина работает по необратимому циклу. Если допустить η’ > η, то мы опять придем к противоречию со вторым законом термодинамики. Однако допущение η’ < η не противоречит второму закону термодинамики, так как необратимая тепловая машина не может работать как холодильная машина. Следовательно, КПД любой тепловой машины η’ ≤ η, или

Коэффициент полезного действия идеальной тепловой машины можно увеличить

Это и есть основной результат:

Коэффициент полезного действия идеальной тепловой машины можно увеличить

КПД реальных тепловых машин

Формула (5.12.13) дает теоретический предел для максимального значения КПД тепловых двигателей. Она показывает, что тепловой двигатель тем эффективнее, чем выше температура нагревателя и ниже температура холодильника. Лишь при температуре холодильника, равной абсолютному нулю, η = 1.

Но температура холодильника практически не может быть намного ниже температуры окружающего воздуха. Повышать температуру нагревателя можно. Однако любой материал (твердое тело) обладает ограниченной теплостойкостью, или жаропрочностью. При нагревании он постепенно утрачивает свои упругие свойства, а при достаточно высокой температуре плавится.

Сейчас основные усилия инженеров направлены на повышение КПД двигателей за счет уменьшения трения их частей, потерь топлива вследствие его неполного сгорания и т. д. Реальные возможности для повышения КПД здесь все еще остаются большими. Так, для паровой турбины начальные и конечные температуры пара примерно таковы: Т1 = 800 К и Т2 = 300 К. При этих температурах максимальное значение коэффициента полезного действия равно

Коэффициент полезного действия идеальной тепловой машины можно увеличить

Действительное же значение КПД из-за различного рода энергетических потерь приблизительно равно 40%. Максимальный КПД — около 44% — имеют двигатели внутреннего сгорания.

Коэффициент полезного действия любого теплового двигателя не может превышать максимально возможного значения Коэффициент полезного действия идеальной тепловой машины можно увеличить, где Т1 — абсолютная температура нагревателя, а Т2 — абсолютная температура холодильника.

Повышение КПД тепловых двигателей и приближение его к максимально возможному — важнейшая техническая задача.

(1) Однако это не означает, что холодильная машина и тепловой насос — это одно и то же. Назначение холодильной машины — охлаждать некоторый резервуар, передавая теплоту в окружающую среду. Назначение теплового насоса — нагревать резервуар, забирая теплоту из окружающей среды.

(2) Карно фактически установил второй закон термодинамики до Клаузиуса и Кельвина, когда еще первый закон термодинамики не был сформулирован строго.

Источник