Коэффициент полезного действия агрегата и пути его повышения
К основным энергетическим показателям тягово-приводных агрегатов относятся: энергетический КПД, механический КПД, КПД сельхозмашин, удельные энергозатраты, величина которых зависит от конструктивно-технологического совершенства составляющих агрегат, режимов его использования в конкретных условиях эксплуатации. Практическая актуальность определения энергетических показателей машинно-тракторных агрегатов (МТА) обусловлена необходимостью выбора более лучшего, с точки зрения энергетической эффективности агрегата для возделывания с.х. культур по ресурсосберегающим технологиям. Кроме этого, корректный расчет указанных энергетических показателей позволяет изыскивать пути конструктивного совершенствования, рационального комплектования и режима использования МТА.
Энергетический КПД агрегата определяется соотношением полезных энергозатрат (непосредственно на качественное изменение предмета труда) к общему количеству энергии полученной при сгорании топлива в ДВС. Его величина определяется конструктивным совершенством каждой части агрегата (ДВС, передаточного устройства, рабочей машины), их технического состояния, режимом использования и условиям эксплуатации.
Энергетический КПД МТА по величине своей характеризует конструктивно-технологическое совершенство, определяемое наименьшими потерями энергии при ее передаче от ДВС мобильного энергетического средства (МЭС) к рабочим органам и режим использования агрегата. Вместе с тем для оценки энергетической эффективности одного критерия – энергетического КПД, недостаточно, т.к. агрегаты с высоким значением энергетического КПД могут иметь меньшую производительность, а следовательно большие удельные энергозатраты (кДЖ/га).
Величина энергетического КПД тягово-приводного агрегата определяется по выражению:
(3.22)
где – эффективный КПД дизеля; ηо.тр.т-пр-МТА общий КПД тракторов в составе тягово-приводного агрегата; ηсхм .т-пр – КПД тягово-приводной машины.
Эффективный КПД ДВС определяется по известной зависимости:
(3.23)
где Ае, Ао – эффективные энергозатраты в единицу времени (реализуемые на маховике в виде крутящего момента Мд, эффективной мощности Ne) и общие (равные энергии сгоревшего топлива в ДВС), соответственно, мДж/ч; qе – удельный эффективный расход топлива, г/кВт.ч; Н- теплотворная способность топлива, мДж/кг, для дизельного топлива Н= 42,7 мДж/кг;
Правомерно заметить, что эффективный КПД по величине при работе даже однотипного трактора в составе различных по технологическому назначению и конструктивному представлению не является величиной постоянной. Это обусловлено, тем, что момент сопротивления СХМ, приведенной к коленчатому валу двигателя, всегда имеет переменный характер по частоте и амплитуде. Особенно это относится к почвообрабатывающим агрегатам. Кроме этого, у агрегатов в зависимости от условий их работы резервируют часть мощности дизеля с целью преодоления кратковременных перегрузок. Очевидно, что при выполнении части технологического процесса рабочими органами активного типа (с приводом от ВОМ и др.) показатели стохастичности изменения сопротивления орудий будут меньше по величине у тягово-приводных агрегатов, что предопределяет более высокое значение эффективного КПД дизеля. Исходя из физической сущности передачи энергии от ДВС к рабочим машинам (тяговым и приводным), графической интерпретации этого процесса (рис.3.19), опишем изменение энергетических показателей при использовании почвообрабатывающего агрегата с активными рабочими органами [121,194].
( ) ( )
( )
( )
( )
( )
Рисунок 3.19 – Структура передачи энергии от ДВС к рабочим органам почвообрабатывающей машины
Полный механический КПД трактора определяется отношением полезных мощностей к фактической мощности двигателя, которая была направлена на их создание:
(3.24)
Отношение мощности на крюке Nкр к эффективной мощности дизеля, которая затрачивается на ее создание определяет величину тягового КПД трактора в тягово-приводном агрегате, т.е.
(3.25)
где Nв–внутренние потери мощности дизеля, кВт; Nвсп – затраты мощности на работу вспомогательного оборудования, кВт; Nс–потери мощности от изменения момента сопротивления на валу ДВС, кВт; Nр –резерв мощности для преодоления временных перегрузок, кВт.
При , выражение полного КПД трактора заменим уравнением :
(3.26)
где Nе.пр – мощность двигателя (часть мощности ), направленная на создание мощности на ВОМ трактора, кВт; ; ηВОМ – механический КПД передачи энергии к ВОМ, ηВОМ=0,95;
Приводной коэффициент полезного действия трактора в составе тягово-приводного агрегата:
(3.27)
Подставив выражения КПД (3.26, 3.27) в уравнение (3.25) получим зависимость для расчета полного механического КПД трактора в составе тягово-приводного агрегата в общем виде:
(3.28)
где – – доля эффективной мощности двигателя, которая направлена на создание мощности (энергозатрат) на ВОМ.
Из анализа зависимостей (3.25, 3.28) учитывая значительно меньшую величину тягового КПД трактора ( ) по сравнению с КПД ВОМ ( ), очевидно, что механический КПД трактора тем выше, чем большая доля мощности ДВС будет передаваться на привод активных рабочих органов машин. Чем меньше будет потребность в мощности на крюке (усилия на крюке), тем меньше потери энергии на буксование трактора, деформацию почвы движителями. Потребность меньшего усилия на крюке предопределяет меньший сцепной вес трактора, а следовательно меньше потребуется энергии на его перекатывание. Это особенно важно, если трактор работает на рыхлых почвах (агрофон -пахота, поле подготовленное под посев и др.).
Выполнение технологического процесса, например, предпосадочной подготовки почвы комбинированным агрегатом, обуславливает передвижение трактора по плотной почве (зяби, стерне), что значительно снижает коэффициент сопротивления перекатыванию трактора и СХМ по сравнению с последовательной работой простых агрегатов. В первом случае f = 0.08…1.0, во втором при культивации, бороновании f = 0.12…0.16.
Уровень энергетической эффективности технологических агрегатов в растениеводстве в значительной мере определяется «замыкающим» звеном – рабочей машиной, орудием, энергетическая эффективность которых определяется КПД (3.22). Его величина показывает, какая часть от общей энергии подведенной к машине , используется непосредственно на преобразование предмета труда (почвы, растения) из одного качественного состояния в другое- конечное или промежуточное. И важно, чтобы конструкция машины, структура и режим пооперационного воздействия на почву не только предопределяла выполнение агротехнических требований по качеству, но обуславливали наиболее эффективное использование энергии для этого. В настоящее время КПД большинства тяговых сельхозмашин находится в пределах 0,30…0,55 т.е. только 30…55% подведенной к машине мощности от крюка трактора расходуется непосредственно на полезную работу. Чтобы определить основные причины этого, пути совершенствования машин и в целом технологических процессов необходимо аналитически описать взаимосвязь КПД СХМ с показателями их конструкции, параметрами технологического процесса. В общем виде КПД тягово-приводной машины ( ) определяется соотношением полезной мощности (на деформацию обрабатываемого материала пассивными и активными рабочими органами машины, сообщению частицам материала кинетической энергии, к мощности, переданной от крюка и ВОМ трактора:
(3.29)
Nт.схм – технологически полезные затраты мощности на преобразование предмета труда пассивными тяговыми органами, кВт; Nтехн.р.о. –технологические полезные затраты мощности на преобразование предмета труда активными рабочими органами, кВт.
Технологические полезные затраты тяговой мощности определяются уравнением:
(3.30)
где Nf.сц – затраты мощности на перекатывание сцепки (при ее наличии в агрегате), кВт; Nсхм.f– затраты мощности на перекатывание машины, кВт; Nсхм.μ – затраты мощности на протаскивание рабочих органов машины при взаимодействии их с почвой во время выполнения технологического процесса. кВт;; µ -коэффициент трения опорной поверхности рабочих органов.
Потери мощности на перекатывание и протаскивание машин при выполнении технологической операции равны:
(3.31)
где Gкол – сила тяжести от массы машины (часть ее веса), приходящаяся на опорные колеса, кН; Gопор – сила тяжести от массы машины, приходящаяся на опорные поверхности пассивных рабочих органов при протаскивании в почве, кН; Gор – сила тяжести от всей массы машины, кН; fпрот – коэффициент протаскивания машины.
В усредненных условиях работы почвообрабатывающих орудий (плугов, плоскорезов, щелевателей и др.) сила сопротивления протаскиванию орудия в борозде зависит от величины коэффициента протаскивания:
(3.32)
Средняя величина коэффициента fпрот ≈ 0,35 при интервале 0,25…0,40. Величина этого коэффициента зависит от типа рабочих органов, веса орудия , конструкции и расстановки опорных колес, состояния и типа почвы.
Если обозначить ,то при средних условиях работы МТА (после некоторых преобразований и учета (10):
(3.33)
и тогда потери мощности (рис.3.28) на протаскивание и перекатывание мощности орудия в почве будут равны:
(3.34)
Изменения затрат мощности на протаскивание орудия в зависимости от изменения скорости движения (рис.3.20) показывают, что с увеличением скорости движения увеличение мощности на протаскивание находится в пределах агротехнически допустимых скоростей и составляет 5-10% от эффективной мощности.
Рисунок 3.20 – Изменение затрат мощности на протаскивание орудия в зависимости от скорости поступательного движения агрегата
Следовательно полезные затраты энергии на изменения качественного состояния почвы будут равны:
(3.35)
а с учетом схемы (рис.1) передачи энергии от ДВС к рабочей машине [7].
(3.36)
Рисунок 3.21 – Полезные затраты энергии на изменение качественного состояния почвы в зависимости от изменения µ – коэффициента трения опорной поверхности рабочих органов (коэффициент скольжения металла о почву).
Рисунок 3.22 – Полезные затраты энергии на изменение качественного состояния почвы в зависимости от изменения ρ
Полезные затраты энергии на изменение качественного состояния почвы снижаются с увеличением ρ( отношение массы опорной поверхности СХМ к массе орудия в целом) (рис.3.25-3.26), а с увеличением ρ полезные затраты имеют нарастающий характер. При передаче энергии от ВОМ к машине с активными рабочими органами полезная мощность на обработку будет равна :
(3.37)
где- ηпер-– КПД, учитывающий механические потери в передаче мощности от ВОМ (через трансмиссию – карданные валы, редуктор, цепные и ременные передачи и др.) к активным рабочим органам ( =0,9…0,94); – затраты мощности на холостое прокручивание активных рабочих органов при рабочих скоростях вращения. Ее величину устанавливают экспериментально.
На основании полученых уравнений (3.40, 3.41, 7,3.48, ,3.49) КПД СХМ тягово-приводной может быть определен по выражению:
(3.38)
Рисунок 3.23 – Изменение полезной мощности на обработку почвы от изменения передаваемой энергии от вала отбора мощности
Анализ зависимостей (рис.3.24) показывает, что КПД ротационной почвообрабатывающей машины находится в прямой зависимости от КПД механизма привода барабана и от потерь на перекатывание опорных колес или полозков машины и равен отношению мощности на преодоление полезных сопротивлений ко всей потребляемой мощности[121].
Рисунок 3.24 – Коэффициент полезного действия СХМ тягово-приводной
По наивысшим значениям энергетического КПД агрегата, меньшей величине удельных энергозатрат на единицу выполненной с заданным качеством технологической операции выбирается агрегат, имеющий наивысшую производительность.
Удельные энергозатраты на единицу выполненной работы тем или иным агрегатом, сочетанием простых агрегатов определяется по выражению:
(3.39)
где – qга – погектарный расход топлива, кг/га; Н – теплотворная способность топлива, кДж; Вр – ширина захвата агрегата, м; Vр – скорость движения агрегата, м/с; τ – коэффициент использования времени смены.
Рисунок 3.25 – Удельные энергозатраты на единицу выполненной работы
По наивысшим значениям энергетического КПД агрегата, меньшей величине удельных энергозатрат на единицу выполненной с заданным качеством технологической операции будет выбираться агрегат, имеющий наивысшую производительность.
Словом «полезное» в физике является эффект после сопротивления. Ярким примером можно назвать сопротивление металла обрабатывающему станку, для подъемного крана – масса объекта. Например, КПД обычной лампы накапливания не превышает 5%, когда светодиодные имеют гораздо выше. Это происходит потому что большая часть потребляемой энергии уходит на генерирование теплоты, а не света.
Подобное есть и в электронике и этот коэффициент необходимо учитывать при проектировании плат, электросхем. Здесь важно учитывать сопротивление проводимости металла и использовать материалы имеющие меньшее сопротивление. В статье будут рассмотрены основные аспекты КПД, как его рассчитывать, на что он влияет и какие есть основные возможности, чтобы его увеличить.
Формула коэффициента полезного действия (КПД).
Что такое КПД
Коэффициент полезного действия (кпд) – отношение полезно используемой энергии Wп, напр. в виде работы, к общему кол-ву энергии W, получаемой системой (машиной или двигателем), Wп/W. Из-за неизбежных потерь энергии на трение и др. неравновесные процессы для реальных систем всегда. На основании второго начала термодинамики для тепловых машин наибольший кпд (отношение работы Wп, совершаемой за один цикл, к кол-ву подведённой к ней за этот цикл теплоты Q)зависит только от темп-ры нагревателя T1 и холодильника Т2 и равен = Wп/Q= (Т1- T2/T1(Карно теорема).
Как отличается параллельное и последовательное соединение резисторов.
Читать далее
Масляные трансформаторы – что это такое, устройство и принцип работы.
Читать далее
Для электрич. двигателей кпд равен отношению полезной механич. работы к электрич. энергии, получаемой от источника; в электрич. трансформаторах кпд – отношение эл–магн. энергии, получаемой во вторичной обмотке, к энергии, потребляемой в первичной обмотке. Понятие кпд имеет общий характер и применимо к разл. системам: электрич. генераторам, двигателям разного рода, полупроводниковым приборам, биол. объектам, поэтому оно может служить для сравнительной оценки эффективности разнообразных процессов.
Интересно почитать: Что такое закон Джоуля-Ленца.
Мощность и коэффициент полезного действия электродвигателей
Электрические двигатели имеют высокий коэффициент полезного действия (КПД), но все же он далек от идеальных показателей, к которым продолжают стремиться конструкторы. Все дело в том, что при работе силового агрегата преобразование одного вида энергии в другой проходит с выделение теплоты и неминуемыми потерями. Рассеивание тепловой энергии можно зафиксировать в разных узлах двигателя любого типа. Потери мощности в электродвигателях являются следствием локальных потерь в обмотке, в стальных деталях и при механической работе. Вносят свой вклад, пусть и незначительный, дополнительные потери.
Расчет КПД.
Магнитные потери мощности
При перемагничивании в магнитном поле сердечника якоря электродвигателя происходят магнитные потери. Их величина, состоящая из суммарных потерь вихревых токов и тех, что возникают при перемагничивании, зависят от частоты перемагничивания, значений магнитной индукции спинки и зубцов якоря. Немалую роль играет толщина листов используемой электротехнической стали, качество ее изоляции.
Механические и электрические потери
Механические потери при работе электродвигателя, как и магнитные, относятся к числу постоянных. Они складываются из потерь на трение подшипников, на трение щеток, на вентиляцию двигателя. Минимизировать механические потери позволяет использование современных материалов, эксплуатационные характеристики которых совершенствуются из года в год. В отличие от них электрические потери не являются постоянными и зависят от уровня нагрузки электродвигателя. Чаще всего они возникают вследствие нагрева щеток, щеточного контакта.
Падает коэффициент полезного действия (КПД) от потерь в обмотке якоря и цепи возбуждения. Механические и электрические потери вносят основной вклад в изменение эффективности работы двигателя.
Добавочные потери
Добавочные потери мощности в электродвигателях складываются из потерь, возникающих в уравнительных соединениях, из потерь из-за неравномерной индукции в стали якоря при высокой нагрузке. Вносят свой вклад в общую сумму добавочных потерь вихревые токи, а также потери в полюсных наконечниках. Точно определить все эти значения довольно сложно, поэтому их сумму принимают обычно равной в пределах 0,5-1%. Эти цифры используют при расчете общих потерь для определения КПД электродвигателя.
КПД и его зависимость от нагрузки
Коэффициент полезного действия (КПД) электрического двигателя это отношение полезной мощности силового агрегата к мощности потребляемой. Этот показатель у двигателей, мощностью до 100 кВт находится в пределах от 0,75 до 0,9. для более мощных силовых агрегатов КПД существенно выше: 0,9-0,97. Определив суммарные потери мощности в электродвигателях можно достаточно точно вычислить коэффициент полезного действия любого силового агрегата. Этот метод определения КПД называется косвенным и он может применяться для машин различной мощности.
Инженер по специальности “Программное обеспечение вычислительной техники и автоматизированных систем”, МИФИ, 2005–2010 гг.
Задать вопрос
Для маломощных силовых агрегатов часто используют метод непосредственной нагрузки, заключающийся в измерениях потребляемой двигателем мощности. КПД электрического двигателя не является величиной постоянной, своего максимума он достигает при нагрузках около 80% мощности.
Достигает он пикового значения быстро и уверенно, но после своего максимума начинает медленно уменьшаться. Это связывают с возрастанием электрических потерь при нагрузках, более 80% от номинальной мощности. Падение коэффициента полезного действия не велико, что позволяет говорить о высоких показателях эффективности электродвигателей в широком диапазоне мощностей.
В чем измеряется КПД
Коэффициент полезного действия (кпд), характеристика эффективности системы (устройства, машины) в отношении преобразования или передачи энергии; определяется отношением полезно использованной энергии к суммарному количеству энергии, полученному системой; обозначается обычно h = Wпол/Wcyм.
В электрических двигателях кпд — отношение совершаемой (полезной) механической работы к электрической энергии, получаемой от источника; в тепловых двигателях — отношение полезной механической работы к затрачиваемому количеству теплоты; в электрических трансформаторах — отношение электромагнитной энергии, получаемой во вторичной обмотке, к энергии, потребляемой первичной обмоткой.
Интересно почитать: Как образуется статическое электричество.
Для вычисления кпд разные виды энергии и механическая работа выражаются в одинаковых единицах на основе механического эквивалента теплоты, и др. аналогичных соотношений. В силу своей общности понятие кпд позволяет сравнивать и оценивать с единой точки зрения такие различные системы, как атомные реакторы, электрические генераторы и двигатели, теплоэнергетические установки, полупроводниковые приборы, биологические объекты и т. д.
Из-за неизбежных потерь энергии на трение, на нагревание окружающих тел и т. п. кпд всегда меньше единицы. Соответственно этому кпд выражается в долях затрачиваемой энергии, т. е. в виде правильной дроби или в процентах, и является безразмерной величиной. Кпд тепловых электростанций достигает 35—40%, двигателей внутреннего сгорания — 40—50%, динамомашин и генераторов большой мощности—95%, трансформаторов—98%.
В чем измеряется КПД.
Кпд процесса фотосинтеза составляет обычно 6—8%, у хлореллы он достигает 20—25%. У тепловых двигателей в силу второго начала термодинамики кпд имеет верхний предел, определяемый особенностями термодинамического цикла (кругового процесса), который совершает рабочее вещество. Наибольшим кпд обладает Карно цикл. Различают кпд отдельного элемента (ступени) машины или устройства и кпд, характеризующий всю цепь преобразований энергии в системе. Кпд первого типа в соответствии с характером преобразования энергии может быть механическим, термическим и т. д. Ко второму типу относятся общий, экономический, технический и др. виды кпд. Общий кпд системы равен произведению частных кпд, или кпд ступеней.
В технической литературе кпд иногда определяют т. о., что он может оказаться больше единицы. Подобная ситуация возникает, если определять кпд отношением Wпол/Wзатр, где Wпол — используемая энергия, получаемая на «выходе» системы, Wзатр — не вся энергия, поступающая в систему, а лишь та её часть, для получения которой производятся реальные затраты.
Например, при работе полупроводниковых термоэлектрических обогревателей (тепловых насосов) затрата электроэнергии меньше количества теплоты, выделяемой термоэлементом. Избыток энергии черпается из окружающей среды. При этом, хотя истинный кпд установки меньше единицы, рассмотренный кпд h = Wпол/Wзатр может оказаться больше единицы.
Примеры расчета КПД.
Для чего нужен расчет КПД
Коэффициент полезного действия электрической цепи – это отношение полезного тепла к полному. Для ясности приведем пример. При нахождении КПД двигателя можно определить, оправдывает ли его основная функция работы затраты потребляемого электричества. То есть его расчет даст ясную картину, насколько хорошо устройство преобразовывает получаемую энергию. Обратите внимание! Как правило, коэффициент полезного действия не имеет величины, а представляет собой процентное соотношение либо числовой эквивалент от 0 до 1. КПД находят по общей формуле вычисления, для всех устройств в целом. Но чтобы получить его результат в электрической цепи, вначале потребуется найти силу электричества.
По физике известно, что любой генератор тока имеет свое сопротивление, которое еще принято называть внутренняя мощность. Помимо этого значения, источник электричества также имеет свою силу. Дадим значения каждому элементу цепи: сопротивление – r; сила тока – Е; резистор (внешняя нагрузка) – R. Полная цепь Итак, чтобы найти силу тока, обозначение которого будет – I, и напряжение на резисторе – U, потребуется время – t, с прохождением заряда q = lt. Рассчитать работу источника тока можно по следующей формуле: A = Eq = EIt. В связи с тем, что сила электричества постоянна, работа генератора целиком преобразуется в тепло, выделяемое на R и r. Такое количество можно рассчитать по закону Джоуля-Ленца: Q = I2 + I2 rt = I2 (R + r) t.
Формулы расчета КПД.
Затем приравниваются правые части формулы: EIt = I2 (R + r) t. Осуществив сокращение, получается расчет: E = I(R + r). Произведя у формулы перестановку, в итоге получается: I = E R + r. Данное итоговое значение будет являться электрической силой в данном устройстве. Произведя таким образом предварительный расчет, теперь можно определить КПД.
Расчет КПД электрической цепи Мощность, получаемая от источника тока, называется потребляемой, определение ее записывается – P1. Если эта физическая величина переходит от генератора в полную цепь, она считается полезной и записывается – Р2. Чтобы определить КПД цепи, необходимо вспомнить закон сохранения энергии.
В соответствии с ним, мощность приемника Р2 будет всегда меньше потребляемой мощности Р1. Это объясняется тем, что в процессе работы в приемнике всегда происходит неизбежная пустая трата преобразуемой энергии, которая расходуется на нагревание проводов, их оболочки, вихревых токов и т.д. Чтобы найти оценку свойств превращения энергии, необходим КПД, который будет равен отношению мощностей Р2 и Р1.
Итак, зная все значения показателей, составляющих электроцепи, находим ее полезную и полную работу: А полезная. = qU = IUt =I2Rt; А полная = qE = IEt = I2(R+r)t. В соответствии этих значений, найдем мощности источника тока: Р2 = А полезная /t = IU = I2 R; P1 = А полная /t = IE = I2 (R + r). Произведя все действия, получаем формулу КПД: n = А полезная / А полная = Р2 / P1 =U / E = R / (R +r). У этой формулы получается, что R выше бесконечности, а n выше 1, но при всем этом ток в цепи остается в низком положении, и его полезная мощность мала.
Каждый желает найти КПД повышенного значения. Для этого необходимо найти условия, при которых P2 будет максимален. Оптимальные значения будут: dP2 / dR = 0. Далее определить КПД можно формулами: P2 = I2 R = (E / R + r)2 R; dP2 / dR = (E2 (R + r)2 — 2 (r + R) E2 R) / (R + r)4 = 0; E2 ((R + r) -2R) = 0. В данном выражении Е и (R + r) не равны 0, следовательно, ему равно выражение в скобках, то есть (r = R). Тогда получается, что мощность имеет максимальное значение, а коэффициент полезного действия = 50 %. Как видно, найти коэффициент полезного действия электрической цепи можно самостоятельно, не прибегая к услугам специалиста. Главное –соблюдать последовательность в расчетах и не выходить за рамки приведенных формул.
Примеры расчета КПД
Пример 1. Нужно рассчитать коэффициент для классического камина. Дано: удельная теплота сгорания березовых дров – 107Дж/кг, количество дров – 8 кг. После сгорания дров температура в комнате повысилась на 20 градусов. Удельная теплоемкость кубометра воздуха – 1,3 кДж/ кг*град. Общая кубатура комнаты – 75 кубометров.
Чтобы решить задачу, нужно найти частное или отношение двух величин. В числителе будет количество теплоты, которое получил воздух в комнате (1300Дж*75*20=1950 кДж ). В знаменателе – количество теплоты, выделенное дровами при горении (10000000Дж*8 =8*107 кДж). После подсчетов получаем, что энергоэффективность дровяного камина – около 2,5%. Действительно, современная теория об устройстве печей и каминов говорит, что классическая конструкция не является энергоэффективной. Это связано с тем, что труба напрямую выводит горячий воздух в атмосферу.
Для повышения эффективности устраивают дымоход с каналами, где воздух сначала отдает тепло кладке каналов, и лишь потом выходит наружу. Но справедливости ради, нужно отметить, что в процессе горения камина нагревается не только воздух, но и предметы в комнате, а часть тепла выходит наружу через элементы, плохо теплоизолированные – окна, двери и т.д.
Расчет коэффициента полезного действия.
Пример 2. Автомобиль проделал путь 100 км. Вес машины с пассажирами и багажом – 1400 кг. При этом было затрачено14 литров бензина. Найти: КПД двигателя.
Для решения задачи необходимо отношение работы по перемещению груза к количеству тепла, выделившемуся при сгорании топлива. Количество тепла также измеряется в Джоулях, поэтому не придется приводить к другим единицам. A будет равна произведению силы на путь( A=F*S=m*g*S). Сила равна произведению массы на ускорение свободного падения. Полезная работа = 1400 кг x 9,8м/с2 x 100000м=1,37*108 Дж
Удельная теплота сгорания бензина – 46 МДж/кг=46000 кДж/кг. Восемь литров бензина будем считать примерно равными 8 кг. Тепла выделилось 46*106*14=6.44*108 Дж. В результате получаем η ≈21%.
Почему коэффициент полезного действия всегда меньше 100%?
КПД 100% означает, что вся энергия, затраченная на получение мощности двигателя, используется им в работе. В природе такого, в принципе, никогда не бывает, и поэтому КПД всех двигателей всегда меньше 100 процентов.
Как повысить коэффициент полезного действия механизма?
КПД механизмов можно увеличить, снижая трение в подвижных узлах и вес всех составных элементов конструкции. Для этого нужны новые смазочные вещества и лёгкие, но прочные конструкционные материалы.
Чему равен коэффициент полезного действия неподвижного блока?
Например, поднимая груз с помощью подвижного блока, приходится вместе с грузом поднимать и блок, а при этом необходимо совершать «дополнительную» работу. Отношение полезной работы Апол к совершенной Асов, выраженное в процентах, обозначают η и называют коэффициентом полезного действия (КПД): η = Апол/Асов · 100%.
Заключение
Инженер по специальности “Программное обеспечение вычислительной техники и автоматизированных систем”, МИФИ, 2005–2010 гг.
Задать вопрос
Коэффициент полезного действия – величина безразмерная, то есть не нужно ставить какую-либо единицу измерения. Но эту величину можно выразить и в процентах. Для этого полученное в результате деления по формуле число необходимо умножить на 100%. В школьном курсе математики рассказывали, что процент – этот одна сотая чего-либо. Умножая на 100 процентов, мы показываем, сколько в числе сотых.
Дополнительную информацию по данной теме можно узнать из файла «Способы определения коэффициента полезного действия». А также в нашей группе ВК публикуются интересные материалы, с которыми вы можете познакомиться первыми. Для этого приглашаем читателей подписаться и вступить в группу.
www.gk-drawing.ru
www.femto.com.ua
www.cable.ru
www.booksite.ru
www.elquanta.ru
www.remont220.ru
www.el-info.ru
Предыдущая
ТеорияЧто такое электрическое поле: объяснение простыми словам
Следующая
ТеорияПравила безопасности при работе с электричеством