Коэффициент полезного деи ствия мышц человека составляет
На чтение 12 мин. Опубликовано 21.01.2021
Работа мышцы, значение темпа движений и величины поднимаемого груза. Закон средних нагрузок. Коэффициент полезного действия мышц.
Режимы работы мышц
Механическая работа (А), совершаемая мышцей, измеряется произведением поднимаемого веса (Р) на расстояние (h): А = Р * h кгм. При регистрации работы изолированной мышцы лягушки видно, что чем больше величина груза, тем меньше высота, на которую его поднимает мышца. Различают 3 режима работы мышцы: изотонический, изометрический и ауксотонический.
Изотонический режим (режим постоянного тонуса мышцы) наблюдается при отсутствии нагрузки на мышцу, когда мышца закреплена с одного конца и свободно сокращается. Напряжение в ней при этом не изменяется. Это происходит при раздражении изолированной мышцы лягушки, закрепленной одним концом на штативе. Так как при этих условиях Р = 0, то механическая работа мышцы также равна нулю (А = 0). В таком режиме работает в организме человека только одна мышца — мышца языка. (В современной литературе также встречается термин изотонический режим по отношению к такому сокращению мышцы с нагрузкой, при котором по мере изменения длины мышцы напряжение ее сохраняется неизменным, но в этом случае механическая работа мышцы не равна пулю, т. е. она совершает внешнюю работу).
Изометрический режим (режим постоянной длины мышцы) характеризуется напряжением мышцы в условиях, когда она закреплена с обоих концов или когда мышца не может поднять слишком большой груз. При этом h = 0 и, соответственно, механическая работа тоже равна нулю (А = 0). Этот режим наблюдается при сохранении заданной позы и при выполнении статической работы . В этом случае в мышечном волокне все равно происходят процессы возникновения и разрушения мостиков между актином и миозином, т. е. тратится энергия на эти процессы, но отсутствует механическая реакция перемещения нитей актина вдоль миозина. Физиологическая характеристика такой работы заключается в оценке величины нагрузки и длительности работы.
Ауксотонический режим (смешанный режим) характеризуется изменением длины и тонуса мышцы, при сокращении которой происходит перемещение груза. В этом случае совершается механическая работа мышцы (А= Р ? h). Такой режим проявляется при выполнении динамической работы мышц даже при отсутствии внешнего груза, так как мышцы преодолевают силу тяжести, действующую на тело человека. Различают 2 разновидности этого режима работы мышц: преодолевающий (концентрический) и уступающий (эксцентрический) режим.
Для измерения мышечной силы применяют динамометры: кистевой и становой. Максимальная сила кисти, кгс вычисляется как среднее арифметическое трех сжиманий динамометра с максимальной силой через одну минуту.Развивая напряжение и сокращаясь, мышца способна выполнять механическую работу. Наибольшую работу он выполняет при средних нагрузках и средних скоростях. Это явление получило название закона средних нагрузок.Средние нагрузки и средние скорости сокращения различны для разных мышц, что необходимо учитывать при разработке норм и организации труда.
Коэффициент полезного действия мышц
Во время работы в мышце в зависимости от интенсивности изменений обмена веществ возрастает образование тепла. Часть энергии, освобождающейся при химических процессах без превращения в тепло, непосредственно переходит в кинетическую энергию сокращения мышцы. Остальная большая часть энергии химических процессов превращается в тепловую, поэтому мышцы при сокращении выделяют тепло.
Коэффициентом полезного действия (КПД) называется отношение энергии, затраченной на работу мышц, ко всей энергии, произведенной в мышцах во время работы. КПД мышц человека колеблется в среднем от 15 до 25%, КПД мышц ног — от 20 до 35%, а рук — от 5 до 15%.
При тренировке он увеличивается у человека до 25-30% и даже до 35.
Источник
Коэффициент полезного действия мышц
Во время работы в мышце в зависимости от интенсивности изменений обмена веществ возрастает образование тепла. Часть энергии, освобождающейся при химических процессах без превращения в тепло, непосредственно переходит в кинетическую энергию сокращения мышцы. Остальная большая часть энергии химических процессов превращается в тепловую, поэтому мышцы при сокращении выделяют тепло.
Коэффициентом полезного действия (КПД) называется отношение энергии, затраченной на работу мышц, ко всей энергии, произведенной в мышцах во время работы. КПД мышц человека колеблется в среднем от 15 до 25%, КПД мышц ног — от 20 до 35%, а рук — от 5 до 15%.
При тренировке он увеличивается у человека до 25-30% и даже до 35%, а у животных — до 50%,
Анаэробной и аэробной фазам биохимических процессов соответствуют две фазы теплообразования: начальная и восстановительная, или отставленная.
Начальная фаза вызывается биохимическими анаэробными процессами, ведущими к сокращению мышцы. При одиночном сокращении мышцы 65-70% тепла приходится на период сокращения и 30-35% — на период расслабления (запаздывающее анаэробное теплообразование). Небольшое количество тепла выделяется во время возбуждения, предшествующего сокращении). При кратковременных тетанусах на запаздывающее теплообразование приходится 20% всего тепла. В аэробных условиях в атмосфере кислорода в начальной фазе образуется столько же тепла, сколько его образуется без кислорода, и на начальную анаэробную фазу приходится 40% всего тепла, выделяемого мышцей в присутствии кислорода.
Так как при пассивном укорочении и небольшом растяжении мышцы выделяется тепло, то часть тепла в начальной фазе зависит от изменения эластичности мышц.
Восстановительная фаза теплообразования вызывается главным образом окислительными процессами. Только 25% тепла приходится на запаздывающее анаэробное теплообразование. Всего в этой фазе образуется 60% тепла, выделяемого мышцей в присутствии кислорода. Во время этой фазы происходит окисление части молочной кислоты и восстановление остальной ее части в гликоген. В нормальных условиях мышечной деятельности бескислородное и кислородное расщепление веществ и их ресинтез происходят одновременно. Поэтому при нормальном кровообращении длительная работа малой интенсивности сравнительно долго не сопровождается заметным уменьшением содержания сахара в крови и накоплением в ней молочной кислоты.
При ауксотоническом сокращении выделяется на 40% больше тепла, чем при изометрическом. Чем больше напряжение мышцы при изометрическом сокращении, тем больше теплообразование. При изотоническом сокращении без груза теплообразование очень мало. Оно меньше, чем при изометрическом сокращении. Но если мышца сокращается с грузом, то теплообразование тем больше, чех: больше масса груза.
Общее теплообразование в обе фазы больше начального при одиночных сокращениях в 1,5 раза, а при тетанических в 2,5 раза. Следовательно, при неизменной начальной фазе увеличивается восстановительная фаза. Это свидетельствует о более экономном использовании веществ и энергии при тетанусе.
Источник
Мышечные ткани. Строение и функции мышечного волокна. Преобразование энергии при мышечном сокращении. КПД мышечного сокращения
Мы́шечными тка́нями называют ткани, различные по строению и происхождению, но сходные по способности к выраженным сокращениям. Они обеспечивают перемещения в пространстве организма в целом, его частей и движение органов внутри организма и состоят из мышечных волокон.
Мышечное волокно представляет собой вытянутую клетку. В состав волокна входят его оболочка — сарколемма, жидкое содержимое — саркоплазма, ядро, митохондрии, рибосомы, сократительные элементы — миофибриллы, а также содержащий ионы Са 2+ , — саркоплазматический ретикулум. Поверхностная мембрана клетки через равные промежутки образует поперечные трубочки, по которым внутрь клетки проникает потенциал действия при ее возбуждении.
Функциональной единицей мышечного волокна является миофибрилла. Повторяющаяся структура в составе миофибриллы называется саркомером. Миофибриллы содержат 2 вида сократительных белков: тонкие нити актина и вдвое более толстые нити миозина. Сокращение мышечного волокна происходит благодаря скольжению миозиновых филаментов по актиновым. При этом перекрывание филаментов увеличивается и саркомер укорачивается.
Главная функция мышечного волокна— обеспечение мышечного сокращения.
Преобразование энергии при мышечном сокращении. Для сокращения мышцы используется энергия,освобождающаяся при гидролизе АТФ актомиозином,причем процесс гидролиза тесно сопряжен с сократительным процессом. По количеству выделяемого мышцей тепла можно оценить эффективность преобразования энергии при сокращении.. При укорочении мышцы скорость гидролиза повышается в соответствии с ростом производимой работы. освобождаемой при гидролизе энергии достаточно для обеспечения только совершаемой работы, но не полной энергопродукции мышцы.
Коэффициент полезного действия (кпд) мышечной работы (r) представляет собой отношение величины внешней механической работы (W) к общему количеству выделенной в виде тепла (Е) энергии:
Наиболее высокое значение кпд изолированной мышцы наблюдается при внешней нагрузке, составляющей около 50% от максимальной величины внешней нагрузки. Производительность работы (R) у человека определяют по величине потребления кислорода в период работы и восстановления по формуле:
где 0,49 — коэффициент пропорциональности между объемом потребленного кислорода и выполненной механической работой, т. е. при 100% эффективности для выполнения работы, равной 1 кгс․м (9,81 Дж), необходимо 0,49 мл кислорода.
Двигательное действие / КПД
Ходьба/23-33%; Бег со средней скоростью/22-30%; Езда на велосипеде/22-28%; Гребля/15-30%;
Толкание ядра/27%; Метание/24%; Поднятие штанги/8-14%; Плавание/ 3%.
4. Изотонический режим работы мышц. Статическая работа мышц.
Изотонический режим (режим постоянного тонуса мышцы) наблюдается при отсутствии нагрузки на мышцу, когда мышца закреплена с одного конца и свободно сокращается. Напряжение в ней при этом не изменяется. Так как при этих условиях величина нагрузки Р = 0, то механическая работа мышцы также равна нулю (А = 0). В таком режиме работает в организме человека только одна мышца — мышца языка.
Статическая работа не предполагает сильного напряжения, однако в некоторых случаях статическая работа мышц может быть очень напряженной, например при удержании штанги, при некоторых упражнениях на кольцах или параллельных брусьях. Такая работа требует одновременного сокращения всех или почти всех волокон мышц и может продолжаться лишь очень короткое время. При динамической работе поочередно сокращаются различные группы мышц, причем некоторые мышцы работают то динамически, производя движение в суставе, то статически, обеспечивая на некоторое время неподвижность костей того же сустава. Степень напряжения мышц может быть различной.
Статическая работа утомляет скелетную мускулатуру больше, чем динамическая.
5. Общая характеристика системы кровообращения. Скорость движения крови в сосудах. Ударный объем крови. Работа и мощность сердца.
К системе кровообращения относятся сердце и сосуды — кровеносные и лимфатические.. Сердце млекопитающих четырехкамерное. Кровь движется по двум кругам кровообращения.
функции всех элементов сердечно-сосудистой системы: 1) трофическая – снабжение тканей питательными веществами; 2) дыхательную – снабжение тканей кислородом; 3) экскреторную – удаление продуктов обмена из тканей; 4)регуляторную – перенос гормонов, выработка биологически активных веществ, регуляция кровоснабжения, участие в воспалительных реакциях.
При движении крови по сосудам различают линейную и объемную скорость кровотока.
Линейная скорость кровотокаопределяется суммарным сечением сосудистой системы. Она максимальна в аорте — до 50 см/сек и минимальна в капиллярах — около нуля. В венозном отделе сосудистой системы линейная скорость вновь возрастает. Линейная скорость в полых венах в два раза меньше, чем в аорте и равна примерно 25 см/мин.
Объемная скорость кровотока — это количество крови, протекающее через общее сечение сосудистой системы в единицу времени. Она одинакова во всех отделах сосудистой системы крови.
Время полного кругооборота крови — это то время, за которое кровь проходит через большой и малый круги кровообращения. При 70-80 сокращениях сердца в минуту полный кругооборот крови происходит приблизительно за 20-23 сек.
Движение крови в организме: аорта – 500-600 мм/c, артерии – 150-200 мм/c, артериолы – 5 мм/c, капилляры – 0,5 мм/c, средние вены – 60-140 мм/c, полые вены — 200 мм/c. Гипертония – повышенное АД. Гипотония – пониженное АД.
Систолический объем крови. Объем крови, нагнетаемый каждым желудочком в магистральный сосуд (аорту или легочную артерию) при одном сокращении сердца, обозначают как систолический, или ударный, объем крови.
Работа, совершаемая сердцем, затрачивается на преодоление сопротивления и сообщение крови кинетической энергии.
Рассчитаем работу, совершаемую при однократном сокращении левого желудочка.
Vу – ударный объем крови в виде цилиндра. Можно считать, что сердце поставляет этот объем по аорте сечением S на расстояние I при среднем давлении р. Совершаемая при этом работа равна:
A1 = FI = pSI = pVy.
На сообщение кинетической энергии этому объему крови затрачена работа:
где р – плотность крови;υ – скорость крови в аорте. Таким образом, работа левого желудочка сердца при сокращении равна:
Эта формула справедлива как для покоя, так и для активного состояния организма, но эти состояния отличаются разной скоростью кровотока.
6. Уравнение Пуазейля. Понятие о гидравлическом сопротивлении кровеносных сосудов и о способах воздействия на него.
Уравнение Пуазёйля— закон, определяющий расход жидкости при установившемся течении вязкой несжимаемой жидкости в тонкой цилиндрической трубе круглого сечения.
Согласно закону, секундный объёмный расход жидкости пропорционален перепаду давления на единицу длины трубки (градиенту давления в трубе) и четвёртой степени радиуса (диаметра) трубы:
Где Q — объемный секундный расход жидкости; R — радиус трубопровода; p1-p2— перепад давлений на трубке; n—коэффициент трения; L— длина трубки.
Закон Пуазёйля работает только при ламинарном течении и при условии, что длина трубки превышает так называемую длину начального участка, необходимую для развития ламинарного течения в трубке.
Гидравлическое сопротивление прямо пропорционально длине сосуда и вязкости крови и обратно пропорционально радиусу сосуда в 4-й степени, то есть больше всего зависит от просвета сосуда
, а также от состояния стенок сосудов и от их эластичности.
Так как наибольшим сопротивлением обладают артериолы , общее периферическое сопротивление сосудов(ОПСС) зависит главным образом от их тонуса. Различают центральные механизмы регуляции тонуса артериол (нервные и гормональные влияния)и местные (миогенная , метаболическая и эндотелиальная регуляция).
На артериолы оказывают постоянный тонический сосудосуживающий эффект симпатические нервы . Основные гормоны, в норме участвующие в регуляции тонуса артериол, — это адреналин и норадреналин .
Миогенная регуляция сводится к сокращению или расслаблению гладких мышц сосудов в ответ на изменения трансмурального давления; при этом напряжение в их стенке остается постоянным. Тем самым обеспечивается ауторегуляция местного кровотока — постоянство кровотока при меняющемся перфузионном давлении.
Метаболическая регуляция обеспечивает расширение сосудов при повышении основного обмена (за счет выброса аденозина и простагландинов) и гипоксии (также за счет выделения простагландинов).
Дата добавления: 2014-11-20 ; Просмотров: 1915 ; Нарушение авторских прав?
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Источник
На чтение 13 мин. Обновлено 16 ноября, 2020
Работа мышцы, значение темпа движений и величины поднимаемого груза. Закон средних нагрузок. Коэффициент полезного действия мышц.
Режимы работы мышц
Механическая работа (А), совершаемая мышцей, измеряется произведением поднимаемого веса (Р) на расстояние (h): А = Р * h кгм. При регистрации работы изолированной мышцы лягушки видно, что чем больше величина груза, тем меньше высота, на которую его поднимает мышца. Различают 3 режима работы мышцы: изотонический, изометрический и ауксотонический.
Изотонический режим (режим постоянного тонуса мышцы) наблюдается при отсутствии нагрузки на мышцу, когда мышца закреплена с одного конца и свободно сокращается. Напряжение в ней при этом не изменяется. Это происходит при раздражении изолированной мышцы лягушки, закрепленной одним концом на штативе. Так как при этих условиях Р = 0, то механическая работа мышцы также равна нулю (А = 0). В таком режиме работает в организме человека только одна мышца — мышца языка. (В современной литературе также встречается термин изотонический режим по отношению к такому сокращению мышцы с нагрузкой, при котором по мере изменения длины мышцы напряжение ее сохраняется неизменным, но в этом случае механическая работа мышцы не равна пулю, т. е. она совершает внешнюю работу).
Изометрический режим (режим постоянной длины мышцы) характеризуется напряжением мышцы в условиях, когда она закреплена с обоих концов или когда мышца не может поднять слишком большой груз. При этом h = 0 и, соответственно, механическая работа тоже равна нулю (А = 0). Этот режим наблюдается при сохранении заданной позы и при выполнении статической работы . В этом случае в мышечном волокне все равно происходят процессы возникновения и разрушения мостиков между актином и миозином, т. е. тратится энергия на эти процессы, но отсутствует механическая реакция перемещения нитей актина вдоль миозина. Физиологическая характеристика такой работы заключается в оценке величины нагрузки и длительности работы.
Ауксотонический режим (смешанный режим) характеризуется изменением длины и тонуса мышцы, при сокращении которой происходит перемещение груза. В этом случае совершается механическая работа мышцы (А= Р ? h). Такой режим проявляется при выполнении динамической работы мышц даже при отсутствии внешнего груза, так как мышцы преодолевают силу тяжести, действующую на тело человека. Различают 2 разновидности этого режима работы мышц: преодолевающий (концентрический) и уступающий (эксцентрический) режим.
Для измерения мышечной силы применяют динамометры: кистевой и становой. Максимальная сила кисти, кгс вычисляется как среднее арифметическое трех сжиманий динамометра с максимальной силой через одну минуту.Развивая напряжение и сокращаясь, мышца способна выполнять механическую работу. Наибольшую работу он выполняет при средних нагрузках и средних скоростях. Это явление получило название закона средних нагрузок.Средние нагрузки и средние скорости сокращения различны для разных мышц, что необходимо учитывать при разработке норм и организации труда.
Коэффициент полезного действия мышц
Во время работы в мышце в зависимости от интенсивности изменений обмена веществ возрастает образование тепла. Часть энергии, освобождающейся при химических процессах без превращения в тепло, непосредственно переходит в кинетическую энергию сокращения мышцы. Остальная большая часть энергии химических процессов превращается в тепловую, поэтому мышцы при сокращении выделяют тепло.
Коэффициентом полезного действия (КПД) называется отношение энергии, затраченной на работу мышц, ко всей энергии, произведенной в мышцах во время работы. КПД мышц человека колеблется в среднем от 15 до 25%, КПД мышц ног — от 20 до 35%, а рук — от 5 до 15%.
При тренировке он увеличивается у человека до 25-30% и даже до 35.
Источник
Коэффициент полезного действия мышц
Во время работы в мышце в зависимости от интенсивности изменений обмена веществ возрастает образование тепла. Часть энергии, освобождающейся при химических процессах без превращения в тепло, непосредственно переходит в кинетическую энергию сокращения мышцы. Остальная большая часть энергии химических процессов превращается в тепловую, поэтому мышцы при сокращении выделяют тепло.
Коэффициентом полезного действия (КПД) называется отношение энергии, затраченной на работу мышц, ко всей энергии, произведенной в мышцах во время работы. КПД мышц человека колеблется в среднем от 15 до 25%, КПД мышц ног — от 20 до 35%, а рук — от 5 до 15%.
При тренировке он увеличивается у человека до 25-30% и даже до 35%, а у животных — до 50%,
Анаэробной и аэробной фазам биохимических процессов соответствуют две фазы теплообразования: начальная и восстановительная, или отставленная.
Начальная фаза вызывается биохимическими анаэробными процессами, ведущими к сокращению мышцы. При одиночном сокращении мышцы 65-70% тепла приходится на период сокращения и 30-35% — на период расслабления (запаздывающее анаэробное теплообразование). Небольшое количество тепла выделяется во время возбуждения, предшествующего сокращении). При кратковременных тетанусах на запаздывающее теплообразование приходится 20% всего тепла. В аэробных условиях в атмосфере кислорода в начальной фазе образуется столько же тепла, сколько его образуется без кислорода, и на начальную анаэробную фазу приходится 40% всего тепла, выделяемого мышцей в присутствии кислорода.
Так как при пассивном укорочении и небольшом растяжении мышцы выделяется тепло, то часть тепла в начальной фазе зависит от изменения эластичности мышц.
Восстановительная фаза теплообразования вызывается главным образом окислительными процессами. Только 25% тепла приходится на запаздывающее анаэробное теплообразование. Всего в этой фазе образуется 60% тепла, выделяемого мышцей в присутствии кислорода. Во время этой фазы происходит окисление части молочной кислоты и восстановление остальной ее части в гликоген. В нормальных условиях мышечной деятельности бескислородное и кислородное расщепление веществ и их ресинтез происходят одновременно. Поэтому при нормальном кровообращении длительная работа малой интенсивности сравнительно долго не сопровождается заметным уменьшением содержания сахара в крови и накоплением в ней молочной кислоты.
При ауксотоническом сокращении выделяется на 40% больше тепла, чем при изометрическом. Чем больше напряжение мышцы при изометрическом сокращении, тем больше теплообразование. При изотоническом сокращении без груза теплообразование очень мало. Оно меньше, чем при изометрическом сокращении. Но если мышца сокращается с грузом, то теплообразование тем больше, чех: больше масса груза.
Общее теплообразование в обе фазы больше начального при одиночных сокращениях в 1,5 раза, а при тетанических в 2,5 раза. Следовательно, при неизменной начальной фазе увеличивается восстановительная фаза. Это свидетельствует о более экономном использовании веществ и энергии при тетанусе.
Источник
Почему реальное КПД мышц человека являяется всего 4 — 7 % от максимально возможного ?
Для чего в мышцах заложен такой потенциал, а применения ему нет? Это не понятно мне с точки зрения эволюции — как правило все ненужное в процессе эволюции убирается .
И даже в экстремальных ситуациях кпд мышц не возрастает более чем на 15 — 20 % . Зачем же остальные 80 — 90 % ?
Вы не поняли смысл вопроса .
Я Имел в виду что к примеру теоритический прдел бицепса это возможность при сокращении поднять 5 тонн а он поднимает максимум 100 кг! Так зачем же потенциал в 5 тонн ?
наверно потому что они не подлежат замене.
что касается эволюции. если ты сравниваешь возможности животных, то не стоит забывать что они способны переваривать сырое мясо а некоторые из них переваривают рога и копыта т. е выжимают из пищи все. и срок их жизни не велик.
пример — дети вундеркинды. используя мозги по максимуму, выдавая отличные результаты, достигнув всего (необязательно денег) они сталкиваются с тем что достигли потолка и им некуда больше стремится. теряют смысл жизни и рано прекращают жизнь.
жизнь на пределе подразумевает короткую жизнь.
ресурс плоти ограничен если он и способен поднять 5 тонн то всего лишь несколько раз. не забывай чтоб поднять нужна энергия. для такой массы большая энергия.
оргнизм как аккумулятор.
нужно ли говорить что после принятия такой мощной энергии тело попросту отравится продуктами израсходованных материалов (ведь их нужно нейтрализовать, «переварить» или вывести) и сгорит как бронепровод. а аккумулятор вскипит.
в гоночной машине тоже много потенциала и она может тянуть за собой вагон. но только нужен ли он будет после этого.
низкий КПД — не «потенциал», а хреновая конструкция.
по вашей логике у паровоза был офигенный потенциал — у него де тоже КПД был примерно такой же!
у всякого механизма есть запас прочности и мощности. после использования которых они долго не протягивают. даже у металла есть такое понятие как усталость.
откуда данные про 8% и 5тонн?
растягивали их пока они не разорвались? и когда был разрыв после отметки в 5 тонн? через микросекунду?
как думаешь, велика разница между разрывом через 20 секунд на пятисот килограммах и на пяти тоннах через секунду?
если по другому мерили, то как там скелет среагировал? сколько сердце выдерживат такое давление? ключицы и диафрагма не лопнули?
допустим может человек поднимать пять тонн. но для этого нужные сверхпрочные кости и суставы.
вопрос — как и сколько лет твои сверхпрочные кости будут расти до среднего человеческого роста? ведь сверхпрочные кости устойчивы деформациям. человеческой жизни не хватит чтоб вырастить такой мост. вывод люди будут карликами. про энергию — это сколько и чего надо жрать чтоб выдавать столько джоулей
Источник
Физические качества мышц
Сила мышц
Величина максимального напряжения, которую может развить мышца во время своего возбуждения, характеризует силу мышцы. Она зависит от массы мышцы, количества одновременно возбужденных волокон в мышце, от частоты нервных импульсов, поступающих во время напряжения к мышце. Чем больше масса мышцы, тем больше ее сила. Следовательно, силу мышц можно увеличить, увеличивая массу мышц. Поэтому любой юноша при условии правильной тренировки может достичь значительного развития скелетной мускулатуры. Занятия силовыми упражнениями следует начинать не ранее 14-15 лет.
Скорость сокращения мышцы определяется промежутком времени, за которое эта мышца способна сокращаться и расслабляться. Чем меньше промежуток времени, тем больше будет и скорость сокращения мышцы.
В мышечной системе имеются медленные и быстрые мышцы. К медленным мышцам относятся — мышцы спины, так же и икроножная мышца, к быстрым мышцам относятся мышцы кисти, шеи, руки, глаза. Скорость их движений зависит от силы и скорости сокращения мышц. Выносливость мышц — это способность мышц долгое время поддерживать заданный темп работы. Тонус мышц это когда состояние мышцы постоянного незначительного напряжения. Тонус мышц позволяет сохранять осанку тела, тонические сокращения мышц живота позволяют удерживать органы внутри организма в определенном положении, а тонус не исчерченных мышц сосудов позволяет обеспечить необходимый диаметр сосудов, следовательно, и кровяное давление. Тонус мышц определяется их естественными свойствами и влиянием нервной системы. В состоянии покоя мышцы упруги и эластичны благодаря своему тургору. К мышцам постоянно поступают нервные импульсы. Они поддерживают незначительный тонус мышц, понижение которого отрицательно влияет на деятельность всего организма. Причиной понижения тонуса мышц могут быть отрицательные эмоции, нарушение режима дня, особенно недосыпание, переутомление, нехватка витаминов.
Работа мышц
Во время сокращения мышца выполняют механическую работу. Припомните из физики, как можно определить механическую работу? Величина внешней работы (А) определяется произведением величины силы (Р) на расстояние ее действия (8) или произведением массы (т) на высоту (Л). Например, если тяжелоатлет поднимает штангу, которая весит 100 кг на высоту 2 м, то выполненная им работа будет равняться: А = т • Н = 100 • 2 = 200 кг/м, или 1962 Дж или ньютонометра. 1 килограмм-сила равняется приблизительно 9,81 Ньютона.
Мышцы могут вести статическую или динамическую работу. Статическая работа это когда мышцы напрягаются, но при напряжении не сокращаются, например, при удержании определенного веса, и так же при определенной стойке или позиции тела, статическая работа обычно сильно утомляет, особенно подростков и детей. При динамической работе, (бег, плавание, ходьба, езда на велосипеде, спортивные игры и др.) мышцы по очереди то сокращаются, то расслабляются заменяя друг дружку. Динамическая работа меньше утомляет, потому что во время расслабления мышцы успевают отдохнуть. Каждая физическая работа характеризуется величиной нагрузки и скоростью ее выполнения. Опытами установлено, что у человека наиболее продуктивная физическая работа тогда, когда он работает со средней нагрузкой и в среднем темпе.
Показателем эффективности работы мышц является коэффициент полезного действия (КПД). Как известно из физики, этот показатель используют и для оценки эффективности работы любых двигателей. КПД является отношением выполненной механической работы (А) к общим энергетическим затратам (О), то есть:
Установлено, что КПД мышц человека может достигать 25—30 %. То есть только 30 % всей энергии сокращения мышц расходуется на механическую работу, а 70 % превращается в тепло. Кстати, у многих современных бензиновых и электрических двигателей КПД больше, чем у скелетных мышц. Но ни один из них не само восстанавливается и не работает непрерывно столько лет, как мышцы. Любая работа мышц сопровождается потерями определенного количества энергии, которая образуется при распаде и окислении органических соединений в основном углеводов. Для того что бы был процесс окисления, необходим кислород. Употребление кислорода зависит от мощности выполняемой работы. Чем больше мышц принимает участие в работе, тем больше кислорода им нужно. Конечными продуктами распада углеводов являются вода и углекислый газ. Кровь, поступающая к мышцам по кровеносным сосудам, снабжает работающие органы кислородом и питательными веществами и поглощает углекислый газ и другие продукты распада.
Утомление мышц
Выполнение продолжительной или интенсивной работы приводит к утомлению мышц и прекращению выполняемой работы. Время развития утомления зависит от характера труда. Проделайте такой опыт. Возьмите в руки гантели массой по 3 кг. Разведите руки с гантелями в стороны, поднимите руки их до уровня плеча и держите их в этом положении столько, сколько сможете. Вы убедитесь, что утомление при непрерывном статическом напряжении мышц развивается быстро. Значительно позже устают мышцы, если эти гантели поднимать и опускать. Такая ритмическая, динамическая работа дает возможность мышцам частично восстанавливать свою работоспособность в промежутках между сокращениями. Каковы причины утомления? При выполнении статической работы утомляются в первую очередь не сами мышцы, а нервные центры, которые регулируют работу этих мышц. И для поддержания физической работоспособности необходима что бы и нервная система так же могла поддерживать высокую работоспособность.
Уставание при динамической работе происходит по различным причинам. К основным из них относятся малое снабжение мышц кислородом, уменьшение образования энергии, или накопление продуктов распада.
Полезно или может вредно утомление? Казалось бы, что вредно. Для чего тогда утомлять мышцы? Но если смотреть с физиологической точки зрения, то утомление — это полезное явление, а вот переутомление, вредно. Почему же утомление полезно? Существует очень важная биологическая закономерность. Она заключается в том, что после окончания обусловившей утомление работы, в период отдыха, происходит не только восстановление работоспособности мышц, но даже ее увеличение. Это явление называют сверх восстановлением. Благодаря этому мышцы могут выполнять еще большую работу, чем до развития утомления. При этом новая усталость приведет к еще большему сверх восстановлению, а значит, и к большей работоспособности. Таким образом, без утомления невозможно повышение работоспособности мышц. Такая закономерность свойственна всем органам, тканям, в том числе и нервной. Но чрезвычайно длительная или же интенсивная работа может привести к переутомлению. При переутомлении исчерпываются энергетические ресурсы клетки, могут разрушаться ее органеллы, а то и сами клетки. Чтобы предотвратить переутомление, необходимо избегать без достаточной физической подготовки чрезмерных нагрузок. При появлении ощущения значительной усталости нужно отдохнуть. Чередование физических нагрузок и отдыха является одним из способов поддержания высокой работоспособности и предотвращения переутомления.
Источник