Как называется полезный газ который выделяют в окружающую среду растения
Леса считаются «зелеными легкими планеты» не напрасно. Благодаря постоянной работе растений, фотосинтезу, все живое на Земле имеет возможность дышать. Более того, без них простейшие организмы не смогли бы эволюционировать и сложно представить, какой облик имела бы планета. Что такое фотосинтез и как происходит данный процесс, рассмотрим в деталях.
Что такое фотосинтез?
Фотосинтез – биохимический процесс, во время которого с помощью особых пигментов растений и энергии света из неорганических веществ (углекислого газа, воды) возникают органические. Это один из наиболее важных процессов, за счет которого появилось и продолжает существовать большинство организмов на планете.
Распределение фотосинтеза
Интересный факт: к фотосинтезу способны наземные растения, а также зеленые водоросли. При этом водоросли (фитопланктон) вырабатывают 80% кислорода.
Значение фотосинтеза для жизни на Земле
Без фотосинтеза вместо множества живых организмов на нашей планете существовали бы одни лишь бактерии. Именно энергия, полученная в результате данного химического процесса, позволила бактериям эволюционировать.
Любые природные процессы нуждаются в энергии. Она поступает от Солнца. Но правильную форму солнечный свет приобретает лишь после того, как преобразовывается растениями.
Растения используют лишь часть энергии, а остальную накапливают в себе. Ими питаются травоядные животные, которые являются пищей для хищников. В ходе образовавшейся цепочки каждое звено получает необходимые ценные вещества и энергию.
Растения, наподобие солнечных панелей, преобразовывают энергию света
Кислород, вырабатываемый в ходе реакции, необходим для дыхания всем существам. Дыхание представляет процесс, противоположный фотосинтезу. При этом органические вещества окисляются, разрушаются. Полученная энергия используется организмами для выполнения различных жизненно необходимых задач.
В период существования планеты, когда растений было мало, кислород практически отсутствовал. Примитивные формы жизни получали минимум энергии другими способами. Ее было слишком мало для развития. Поэтому дыхание за счет кислорода открыло более широкие возможности.
Еще одна функция фотосинтеза – защита организмов от воздействия ультрафиолетового света. Речь идет об озоновом слое, находящемся в зоне стратосферы на высоте около 20-25 км. Образуется он за счет кислорода, который превращается в озон под действием солнечного света. Без этой защиты жизнь на Земле ограничивалась бы только подводными организмами.
Озоновый слой
Организмы выделяют во время дыхания углекислый газ. Он является обязательным элементом фотосинтеза. В противном случае углекислый газ просто накапливался бы в верхних слоях атмосферы, значительно усиливая парниковый эффект.
Это серьезная экологическая проблема, суть которой состоит в повышении температуры атмосферы с негативными последствиями. К ним относится изменение климата (глобальное потепление), таяние ледников, повышение уровня Мирового океана и др.
Функции фотосинтеза:
- выделение кислорода;
- образование энергии;
- образование питательных веществ;
- создание озонового слоя.
Определение и формула фотосинтеза
Термин «фотосинтез» произошел от сочетания двух слов: фото и синтез. В переводе с древнегреческого они означают «свет» и «соединение» соответственно. Таким образом, энергия света превращается в энергию связей органических веществ.
Упрощенная схема фотосинтеза
Схема:
Углекислый газ + вода + свет = углевод + кислород.
Научная формула фотосинтеза:
6СО2 + 6Н2О → С6Н12О6 + 6О2.
Фотосинтез происходит так, что непосредственный контакт воды и СО2 не наблюдается.
Значение фотосинтеза для растений
Растениям для роста и развития требуются органические вещества, энергия. Благодаря фотосинтезу они обеспечивают себя данными компонентами. Создание органических веществ – основная цель фотосинтеза для растений, а выделение кислорода считается побочной реакцией.
Образование органических веществ
Интересный факт: растения уникальны, поскольку для получения энергии другие организмы им не нужны. Поэтому они образуют отдельную группу – автотрофы (в переводе с древнегреческого языка «питаюсь сам»).
Как происходит фотосинтез?
Фотосинтез протекает непосредственно в зеленых частях растений – хлоропластах. Они входят в состав растительных клеток. Хлоропласты содержат вещество – хлорофилл. Это и есть тот основной фотосинтетический пигмент, благодаря нему происходит вся реакция. Кроме того, хлорофилл определяет зеленый цвет растительности.
Хлоропласты в клетках растения
Для этого пигмента характерна способность поглощать свет. А в клетках растения запускается настоящая биохимическая «лаборатория», в которой вода и СО2 превращаются в кислород, углеводы.
Вода поступает через корневую систему растения, а газ проникает непосредственно в листья. Свет выступает в качестве источника энергии. Когда частица света действует на молекулу хлорофилла, происходит ее активация. В молекуле воды H2O кислород (O) остается невостребованным. Таким образом, он становится побочным для растений, но таким важным для нас, продуктом реакции.
Фазы фотосинтеза
Фотосинтез делится на две стадии: световую и темновую. Протекают они одновременно, но в разных частях хлоропласта. Название каждой фазы говорит само за себя. Световая или светозависимая фаза происходит только при участии частиц света. Темновой или светонезависимой фазе наличие света не требуется.
Прежде чем рассматривать каждую фазу подробнее, стоит разобраться в строении хлоропласта, поскольку оно определяет суть и место протекания стадий. Хлоропласт является разновидностью пластид и внутри клетки расположен отдельно от остальных ее компонентов. Он имеет форму зернышка.
Строение хлоропласта
Составляющие части хлоропласта, участвующие в фотосинтезе:
- 2 мембраны;
- строма (внутренняя жидкость);
- тилакоиды;
- люмены (просветы внутри тилакоидов).
Световая фаза фотосинтеза
Протекает на тилакоидах, точнее, их мембранах. Когда на них попадает свет, выделяются и накапливаются негативно заряженные электроны. Таким образом, фотосинтетические пигменты лишаются всех электронов, после чего наступает очередь распада молекул воды:
H2O → Н+ + ОН-
При этом образованные протоны водорода имеют положительный заряд и копятся на внутренней мембране тилакоида. В итоге протоны с зарядом плюс и электроны с зарядом минус разделены лишь мембраной.
Происходит выработка кислорода, как побочного продукта:
4ОН → О2 + 2H2O
В определенный момент фазы электронов и протонов водорода становится слишком много. Тогда в работу вступает фермент – АТФ-синтаза. Его задача состоит в том, чтобы переместить протоны водорода из мембраны тилакоида в жидкую среду хлоропласта – строму.
Фазы фотосинтеза
На этом этапе водород попадает в распоряжение другого переносчика – НАДФ (сокращение от никотинамиддинуклеотидфосфат). Это также разновидность фермента, который ускоряет окислительные реакции в клетках. В данном случае его работа состоит в транспортировке протонов водорода в реакции углеводов.
На данной стадии происходит процесс фотофосфолирования, во время него вырабатывается огромное количество энергии. Ее источником является АТФ – аденозинтрифосфорная кислота.
Краткая схема:
- Попадание кванта света на хлорофилл.
- Выделение электронов.
- Выделение кислорода.
- Образование НАДФН-оксидазы.
- Образование энергии АТФ.
Интересный факт: существует реликтовое растение под названием вельвичия, растущее на африканском побережье Атлантического океана. Это единственный представитель своего рода с минимумом листьев, способных к фотосинтезу. Однако возраст вельвичий достигает около 2000 лет.
Вельвичия удивительная
Темновая фаза фотосинтеза
Светонезависимая фаза происходит непосредственно в строме. Она представляет собой ряд ферментативных реакций. Углекислый газ, поглощенный на световой стадии, растворился в воде, а на этом этапе он восстанавливается до глюкозы. Также вырабатываются сложные органические вещества.
Реакции темновой фазы делятся на три основных типа и зависят от вида растений (точнее, их метаболизма), в клетках которых происходит фотосинтез:
- С3-растения;
- С4-растения;
- САМ-растения.
Типы реакций темновой фазы
К С3-растениям относится большая часть культур сельскохозяйственного назначения, которые растут в умеренном климате. В ходе фотосинтеза у них углекислый газ становится фосфоглицериновой кислотой.
К С4-растениям принадлежат субтропические и тропические виды, преимущественно сорняки. Для них характерна трансформация углекислого газа в оксалоацетат. САМ-растения – категория растений, которым не хватает влаги. Они отличаются особенным видом фотосинтеза – CАМ.
С3-фотосинтез
Наиболее распространенным является С3-фотосинтез, который также именуется циклом Кальвина – в честь американского ученого Мелвина Кальвина, который внес огромный вклад в изучение данных реакций и получил за это Нобелевскую премию.
Растения называются С3 из-за того, что во время реакций темновой фазы образуются 3-углеродные молекулы 3-фосфоглицериновой кислоты – 3-PGA. Непосредственное участие принимают различные ферменты.
Цикл Кальвина
Чтобы образовалась полноценная молекула глюкозы, должно пройти 6 циклов реакций светонезависимой фазы. Углевод – главный продукт фотосинтеза в цикле Кальвина, но помимо него вырабатываются жирные и аминокислоты, а также гликолипиды. У С3 растений фотосинтез проходит исключительно в клетках мезофилла.
Главный недостаток С3-фотосинтеза
Растения, относящиеся к группе С3, характеризуются одним существенным недостатком. Если в окружающей среде отмечается недостаточный уровень влаги, способность к фотосинтезу существенно снижается. Это происходит по причине фотодыхания.
Дело в том, что при невысокой концентрации углекислого газа в хлоропластах (меньше 50:1 000 000) вместо фиксации углерода происходит фиксация кислорода. Специальные ферменты существенно замедляются и расходуют солнечную энергию впустую.
Одновременно с этим замедляется рост и развитие растения, поскольку оно недополучает органические вещества. Также не происходит выброс кислорода в атмосферу.
Интересный факт: морской слизень Elysia chlorotica – уникальное животное, которое осуществляет фотосинтез как растения. Оно питается водорослями, хлоропласты которых проникают в клетки пищеварительного тракта и фотосинтезируют там на протяжении месяцев. Вырабатываемые углеводы служат для слизня пищей.
Морской слизень Elysia chlorotica
С4-фотосинтез
В отличие от C3-синтеза, здесь реакции фиксации углекислого газа осуществляются в различных клетках растений. Эти виды растений способны справляться с проблемой фотодыхания, и делают они это при помощи двухэтапного цикла.
С одной стороны поддерживается высокий показатель углекислого газа, а с другой – контролируется низкий уровень кислорода в хлоропластах. Подобная тактика позволяет растениям С4 избежать фотодыхания и связанных с ним сложностей. Представителями растений данной группы являются сахарный тростник, кукуруза, просо и др.
По сравнению с растениями С3 они способны намного интенсивнее выполнять процессы фотосинтеза при условии высокой температуры и недостатка влаги. На первом этапе углекислый газ фиксируется в клетках мезофилла, где образуется 4-углеродная кислота. Затем кислота переходит в оболочку и распадается там на 3-углеродное соединение и углекислый газ.
С4-фотосинтез
На втором этапе полученный углекислый газ начинает работать в цикле Кальвина, где вырабатывается глицеральдегид-3-фосфат и углеводы, необходимые для энергетического обмена.
Благодаря двухэтапному фотосинтезу в растениях С4 образуется достаточное для цикла Кельвина количество углекислого газа. Поэтому ферменты работают в полную силу и не растрачивают энергию напрасно.
Но у и этой системы есть свои минусы. В частности расходуется больший объем энергии АТФ – она необходима для трансформации 4-углеродных кислот в 3-углеродные и в обратном направлении. Таким образом, С3-фотосинтез всегда продуктивнее, чем С4 при должном количестве воды и света.
Что влияет на скорость фотосинтеза?
Фотосинтез может протекать с различной скоростью. Этот процесс зависит от условий окружающей среды:
- вода;
- длина волны света;
- углекислый газ;
- температура.
График скорости фотосинтеза
Вода является основополагающим фактором, поэтому при ее недостатке реакции замедляются. Для фотосинтеза наиболее благоприятны волны красного и сине-фиолетового спектра. Также предпочтительнее высокая степень освещенности, но лишь до определенного значения – при его достижении связь между освещенностью и скоростью реакции исчезает.
Высокая концентрация углекислого газа обеспечивает быстрые фотосинтетические процессы и наоборот. Определенная температура важна для ферментов, которые ускоряют реакции. Идеальные условия для них – около 25-30℃.
Фотодыхание
Дышать необходимо всем живым существам, и растения не являются исключением. Однако этот процесс у них происходит немного иначе, чем у людей и животных, отчего носит название фотодыхания.
В целом, дыхание – физический процесс, во время которого живой организм и окружающая его среда обмениваются газами. Как и всему живому, растениям для дыхания нужен кислород. Но потребляют они его гораздо меньше, чем вырабатывают.
В ходе фотосинтеза, который происходит только при солнечном свете, растения создают для себя пищу. Во время фотодыхания, которое осуществляется круглосуточно, эти питательные вещества ими поглощаются с целью поддержки метаболизма внутри клеток.
Интересный факт: в течение солнечного дня участок леса площадью 1 гектар потребляет от 120 до 280 кг углекислого газа и выделяет от 180 до 200 кг кислорода.
Кислород (как и углекислый газ) проникает в клетки растений через особые отверстия – устьица. Они располагаются в нижней части листочков. На одном листе может располагаться около 1000 устьиц.
Устьица растения
Газообмен растений в зависимости от освещенности
Процесс газообмена при разной освещенности представлен следующим образом:
- Яркий свет. Во время фотосинтеза используется углекислый газ. Растения выделяют больше кислорода, чем потребляют. Его излишки попадают в атмосферу. Углекислый газ потребляется быстрее, чем выделяется дыханием. Неиспользованные углеводы запасаются растением впрок.
- Тусклый свет. Газообмен с окружающей средой не происходит, поскольку растение потребляет весь кислород, который производит.
- Отсутствие света. Происходят только процессы дыхания. Углекислый газ выделяется, а кислород потребляется.
Газообмен в растениях
Хемосинтез
Некоторые живые организмы тоже способны к образованию моноуглеводов из воды и углекислого газа, при этом они не нуждаются в солнечном свете. К ним относятся бактерии, а процесс преобразования энергии называется хемосинтезом.
Хемосинтез являет собой процесс, во время которого синтезируется глюкоза, но вместо солнечной энергии используются химические вещества. Протекает он в зонах с достаточно высокой температурой, подходящей для работы ферментов, и отсутствием света. Это могут быть области вблизи гидротермальных источников, утечек метана на морских глубинах и др.
Хемосинтез
Источником энергии для бактерий выступают химические связи метана и сероводорода. В результате хемосинтеза возникает сера и ее соединения в качестве побочных продуктов реакции.
История открытия фотосинтеза
История открытия и изучения фотосинтеза берет начало в 1600 г., когда Ян Батист ван Гельмонт решил разобраться в актуальном на тот момент вопросе: чем питаются растения и откуда они черпают полезные вещества?
В то время считалось, что источником ценных элементов является почва. Ученый поместил в емкость с землей веточку ивы, но предварительно измерил их вес. На протяжении 5 лет он ухаживал за деревом, поливая его, после чего снова провел измерительные процедуры.
Выяснилось, что вес земли снизился на 56 г, однако деревце стало в 30 раз тяжелее. Это открытие опровергло мнение о том, что растения питаются почвой и породило новую теорию – водного питания.
Опыт Яна Батиста ван Гельмонта
В дальнейшем многие ученые пытались ее опровергнуть. Например, Ломоносов считал, что частично структурные компоненты попадают к растениям через листья. Он руководствовался растениями, которые успешно растут на засушливых территориях. Однако доказать эту версию не удалось.
Ближе всего к реальному положению вещей оказался Джозеф Пристли – ученый-химик и священник по совместительству. Однажды он обнаружил погибшую мышь в перевернутой вверх дном банке, и этот случай заставил его провести в 1770-х годах ряд опытов с грызунами, свечами и емкостями.
Пристли обнаружил, что свеча всегда быстро тухнет, если накрыть ее сверху банкой. Также не может выжить и живой организм. Ученый пришел к выводу, что существуют некие силы, которые делают воздух пригодным для жизни, и попытался связать это явление с растениями.
Он продолжил ставить опыты, но в этот раз попробовал поместить под стеклянную емкость горшочек с растущей мятой. К огромному удивлению, растение продолжало активно развиваться. Тогда Пристли поместил под одну банку растение и мышь, а под вторую – только животное. Результат очевиден – под первой емкостью грызун остался невредим.
Опыт Пристли
Достижение химика стало мотивацией для других ученых всего мира повторить эксперимент. Но загвоздка была в том, что священник проводил опыты в дневное время. А, к примеру, аптекарь Карл Шееле – ночью, когда появлялось свободное время. В итоге, ученый обвинил Пристли в обмане, ведь его подопытные не переносили эксперимент с растением.
Между химиками разразилось настоящее научное противостояние, которое принесло существенную пользу и дало возможность сделать еще одно открытие – чтобы растения восстанавливали воздух, им нужен солнечный свет.
Конечно, фотосинтезом это явление тогда еще никто не называл, да и оставалось немало вопросов. Однако в 1782 ботаник Жан Сенебье смог доказать, что при наличии солнечного света растения способны расщеплять углекислый газ на клеточном уровне. А в 1864, наконец, появилось экспериментальное доказательство того, что растения поглощают углекислый газ и выделяют кислород. Это заслуга ученого из Германии – Юлиуса Сакса.
Фотосинтез – интересное видео
Если Вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Эксперт и постоянный автор научно-популярного журнала: «Как и Почему». Свидетельство о регистрации средства массовой информации ЭЛ № ФС 77 – 76533. Издание «Как и почему» kipmu.ru входит в список социально значимых ресурсов РФ.
Чем дышат растения и как дышат растения
Дыхание — это цепь химических реакций, которая позволяет всем живым существам синтезировать энергию, необходимую для поддержания жизнедеятельности. Чем дышат растения и как дышат растения — об этом читайте ниже.
Это биохимический процесс, при котором воздух перемещается между внешней средой и тканями и клетками вида. При дыхании происходит вдыхание кислорода и выдох углекислого газа. Поскольку сущность получает энергию за счет окисления питательных веществ и, следовательно, высвобождения отходов, это называется метаболическим процессом.
Давайте взглянем на дыхание растений, чтобы узнать о процессе дыхания и о различных типах дыхания, которые происходят у растений.
Да, как животные и люди, растения тоже дышат.
Растения действительно нуждаются в кислороде, чтобы дышать, в ответ на это выделяется углекислый газ. В отличие от людей и животных, растения не обладают какими-либо специализированными структурами для обмена газов, однако они обладают устьицами (обнаруженными в листьях) и чечевичками (обнаруженными в стеблях), активно участвующими в газообмене. Листья, стебли и корни растений дышат медленнее, чем люди и животные.
Дыхание отличается от дыхания. И животные, и люди дышат, что является одной из ступеней дыхания. Растения участвуют в дыхании на протяжении всей своей жизни, так как растительной клетке нужна энергия для выживания, однако растения дышат иначе, благодаря процессу, известному как клеточное дыхание.
В процессе клеточного дыхания растения производят молекулы глюкозы посредством фотосинтеза, улавливая энергию солнечного света и превращая ее в глюкозу. Несколько живых экспериментов демонстрируют дыхание растений. Все растения дышат, чтобы обеспечить энергией свои клетки, чтобы они были активными или живыми.
Давайте посмотрим на дыхательный процесс у растений.
Процесс дыхания у растений
Во время дыхания в разных частях растения происходит значительно меньший газообмен. Следовательно, каждая часть питает и удовлетворяет свои собственные потребности в энергии.
Следовательно, листья, стебли и корни растений обмениваются газами по отдельности. Листья обладают устьицами — крошечными порами, предназначенными для газообмена. Кислород, потребляемый через устьица, используется клетками листьев для разложения глюкозы на воду и углекислый газ.
Дыхание в корнях
Корни, подземная часть растений, впитывают воздух из воздушных зазоров / промежутков между частицами почвы. Следовательно, кислород, поглощенный корнями, используется для высвобождения энергии, которая в будущем будет использоваться для транспортировки солей и минералов из почвы.
Мы знаем, что растения обладают особой способностью синтезировать собственную пищу посредством фотосинтеза. Фотосинтез происходит только в тех частях растений, которые имеют хлорофилл — зеленых частях растений. Фотосинтез настолько очевиден, что иногда кажется, что он маскирует дыхательный процесс у растений. Дыхание не следует принимать за фотосинтез. Дыхание происходит в течение всего дня, но процесс фотосинтеза происходит днем, только при наличии солнечного света. Следовательно, дыхание растений становится очевидным в ночное время.
Это причина, по которой мы часто слышим, как люди предостерегают от сна под деревом в ночное время, поскольку это может привести к удушью из-за избыточного количества углекислого газа, выделяемого деревьями после дыхания.
Дыхание в стеблях
Воздух в случае стебля диффундирует в устьица и проходит через разные части клетки, чтобы дышать. На этом этапе высвободившийся диоксид углерода также распространяется через устьица. Известно, что чечевички осуществляют газообмен у древесных или высших растений.
Дыхание в листьях
Листья состоят из крошечных пор, известных как устьица. Газообмен происходит путем диффузии через устьица. Сторожевые клетки регулируют каждую из устьиц. Обмен газов происходит при закрытии и открытии устьиц между нижним листом и атмосферой.
Различия между дыханием растений и фотосинтезом
Разница между дыханием растений показана в таблице.
Фотосинтез | Дыхание |
Этот процесс характерен для всех зеленых растений, содержащих пигменты хлорофилла. | Этот процесс характерен для всех живых существ, включая растения, животных, птиц и т. д. |
Пища синтезируется. | Пища окисляется. |
Энергия сохраняется. | Высвобождается энергия. |
Это анаболический процесс. | Это катаболический процесс. |
Требуется цитохром. | Здесь тоже нужен цитохром |
Это эндотермический процесс. | Это экзотермический процесс. |
В его состав входят такие продукты, как вода, кислород и сахар. | В его состав входят такие продукты, как диоксид углерода и водород. |
Возникает в дневное время только при наличии солнечного света. | Это непрерывный процесс, происходящий на протяжении всей жизни |
Типы дыхания
Есть два основных типа дыхания.
Аэробное дыхание
Этот тип дыхания имеет место в митохондриях всех эукариотических организмов. F молекулы полностью окисляются в двуокись углерода, воду, и энергия высвобождается в присутствии кислорода. Этот тип дыхания наблюдается у всех высших организмов и требует атмосферного кислорода.
Анаэробное дыхание
Этот тип дыхания происходит в цитоплазме прокариотических образований, таких как дрожжи и бактерии. Здесь меньше энергии высвобождается в результате неполного окисления пищи в отсутствие кислорода. Этиловый спирт и диоксид углерода образуются во время анаэробного дыхания.
Все зеленые растения дышат посредством клеточного дыхания. В этом процессе питательные вещества, полученные из почвы, превращаются в энергию и используются для различных клеточных действий.
У твердых и древесных стеблей дыхание или газообмен происходит через чечевички. Это маленькие поры, разбросанные по всей коре и встречающиеся на всех деревьях.
Устьица — это крошечные поры, расположенные на эпидермисе листьев, стеблей и других органов. Во время клеточного дыхания устьица способствуют газообмену, открывая и закрывая поры.
Корневые волоски, трубчатые отростки эпидермиса, участвуют в обмене дыхательных газов.
Источник
Определение понятия
Для нормального функционирования организма каждой клетке нужна энергия. Она появляется во время процесса, какой называют дыханием, при котором расщепляются органические вещества под воздействием кислорода. В результате появляется углекислый газ, вода и свободная энергия.
Растения любого класса нуждаются в солнечном свете, так как они фотосинтезируют. Как и любые другие живые организмы, они выделяют вредные газы. Хотя под воздействием света из них выходит еще и кислород.
Растения дышат круглые сутки, даже в состоянии покоя. Именно поэтому углекислый газ они выделяют постоянно. А для нормального функционирования всех органов в клетки должен беспрерывно поступать кислород.
Сам процесс, который называется дыханием, осуществляется в два этапа:
Эти процессы взаимосвязаны, один не может протекать без другого. А дыхание у растений практически не отличается от того, что проходит в организме животных.
Роль клеток
Особую роль в процессе играют клетки. И у растений, и у животных дыхание происходит в специальных центрах — митохондриях. Здесь окисляются органические вещества. Чаще всего энергия образуется с помощью углеводов, но иногда в процессе участвуют белки и жиры.
Во время дыхания вода оседает в клетке. А углекислый газ покидает ее, проходя путь диффузии. При этом зачастую он сразу используется в фотосинтезе. Этот процесс ступенчатый — все происходит не сразу, а постепенно.
В органах проходит множество различных реакций, в результате которых образуются и распадаются такие вещества, как органические кислоты. А вода и газы — это только конечные продукты всех процессов.
Часть органических веществ при этом расходуется. Прорастающие семена теряют примерно до 10% сухой массы. И поэтому для развития растения нужна благоприятная среда. Чем хуже природные условия, тем интенсивнее дышит организм. Семена, которые прорастают, набухают, поэтому процессы в их клетках ускоряются. А пространство между ними наполняется воздухом, облегчая передвижение газов.
Питательные вещества поступают в него из почвы через корень, а в клетках они превращаются в энергию. Все зеленые растения на планете поглощают больше углекислого газа из атмосферы, чем выделяют его.
Вместо этого они выпускают в воздух кислород, необходимый для всех остальных живых организмов. Энергия, которая выделяется при дыхании, необходима для непрерывного роста и развития цветка или дерева.
Особенности газообмена
У растительных организмов нет специальных частей тела, которые отвечали бы за дыхание. Обмен газами происходит через отверстия, расположенные в покровных тканях. Они делятся на два типа:
Последние расположены на листьях растения. У каждого устьица есть свои клетки, в которых постоянно изменяется наполненность водой. Когда они разбухают, то закрывают щели. Через устьица листья поглощают и выпускают газ, а также испаряют лишнюю влагу.
На стеблях находятся более крупные отверстия, их называют чечевичками. Они имеют вытянутую узкую форму, напоминают порезы или царапины. Через них также проходит газ и кислород, выходит лишняя вода.
Растения получают воздух не только в чистом, но и в растворенном виде. Он поступает к стеблям через корни из почвы. Если грунт бедный или слишком сухой, деревья и цветы могут погибнуть.
Процесс фотосинтеза
Фотосинтез и дыхание связаны, хотя это противоположные процессы. Их протекание последовательное. Фотосинтез — это один из способов питания растения. Под солнечными лучами деревья и кустарники образуют вещества из энергии, которую они получили благодаря освещению.
А дыханием называется метод ее освобождения. Выходящая энергия содержится в питательных веществах, которые растение запасает. Но между процессами дыхания и фотосинтеза есть отличия.
В первом случае дерево, цветок или мох выделяют углекислый газ. Именно при дыхании растение поглощает кислород, как и другие живые существа. Газообмен проходит через устьица и чечевички. А у прорастающих семян такая тонкая кожа, что вещества могут выходить в атмосферу через ее отверстия.
Дыхание проходит в каждой клетке организма, так как в них образуется и хранится энергия. Если говорить кратко и понятно, то во время этого процесса растение получает полезные вещества из окружающей среды. Во время дыхания оно поглощает из них энергию, использует ее для развития и роста. А излишки выбрасывает обратно в атмосферу.
Во время фотосинтеза растительные организмы поглощают газ, а выделяют кислород. Именно поэтому так ценятся деревья и цветы, ведь они делают атмосферу пригодной для жизни других существ — человека и животных. Газообмен проходит только через устьица. А сам процесс осуществляется лишь в зеленых клетках. Они содержат специальное вещество — хлорофилл.
Фотосинтез играет особую роль в жизни растений. Во время этого процесса поглощается солнечный свет, благодаря которому могут питаться клетки организма. Свет запасается растением, чтобы расходоваться на его развитие и рост.
Дыхание в разных частях дерева не одинаково по интенсивности. Но есть отдельные элементы, где процесс протекает быстро:
Биологи не рекомендуют расставлять такие растения в жилых помещениях — они выделяют много газа. Он делает воздух непригодным для человека. Не стоит ставить в комнатах и срезанные цветы, так как они поглощают слишком много кислорода.
Не только надземные органы могут дышать. Воздухом насыщаются и клетки корней. Для их нормального развития нужно часто рыхлить почву вокруг растения.
Влияние природных условий
Большую активность проявляют растения, которые можно встретить в горах или постоянно освещаемых местностях. Тенелюбивые организмы дышат не так часто и быстро. На интенсивность процесса влияют и другие природные условия:
Если семена высадить в сухую почву, то их дыхание будет замедленным. Для нормального развития и расхода питательных веществ влажность грунта должна быть не менее 33%. Но для длительного хранения зерна и сухих растений ее уровень необходимо понизить до 14%.
Огромное значение имеет степень освещенности. Чем ярче в помещении, тем быстрее будут прорастать семена. Если рассада слишком выросла, то ее нужно поместить в тень. Цветы и деревья, которые встречаются в прохладных местностях с низкой освещенностью, дышат гораздо медленнее.
Кислород необходим всем живым организмам на планете, кроме бактерий. Но в воздухе он содержится в определенном соотношении с другими газами. Состав атмосферы меняется, когда в нее попадают промышленные отходы. В некоторых местностях воздух становится непригодным для проживания животных и человека.
Из-за загрязнений появляются дыры в озоновом слое, из-за чего появляется парниковый эффект. Последствия таких изменений — таяние ледников и затопление некоторых участков суши, а также сдвиг сезонов года.
Очищение воздуха
Атмосфера загрязняется не только из-за человеческой деятельности, но и вследствие жизненных процессов других организмов. Качество воздуха ухудшают несколько типов веществ:
В загрязненной атмосфере растения дышат медленно, это ухудшает их развитие и рост. Но чистый воздух нужен не только для наземных частей — стеблей, листьев, цветков. Корни также нуждаются в кислороде. Недостаток воздуха и переизбыток влаги приводят к гибели дерева.
У зеленых насаждений есть несколько полезных функций:
Солнечный свет в растениях накапливается в виде питательных веществ. Они необходимы всем живым организмам. Накопленную энергию цветы и деревья используют для окисления некоторых веществ. Но схема фотосинтеза гораздо важнее, чем процесс дыхания. Растения выделяют гораздо больше кислорода, чем углекислого газа.
Обмен веществ в деревьях и кустарниках происходит постепенно. Дыхание сопровождается фотосинтезом, оба процесса тесно связаны. Растения обеспечивают атмосферу кислородом и очищают ее от вредного газа.
Источник