Геофизических работ при разведке месторождений полезных ископаемых
Гео̀логоразве́дочные рабо́ты[1] — комплекс различных специальных геологических и других работ, производимых с целью поиска, обнаружения и подготовки к промышленному освоению месторождений полезных ископаемых. Геологоразведочные работы включают изучение закономерностей размещения, условий образования, особенностей строения, вещественного состава месторождений полезных ископаемых с целью их прогнозирования, поисков, установления условий залегания, предварительной и детальной разведки, геолого-экономической оценки и подготовки к промышленному освоению[2].
Цели и задачи геологоразведочных работ[править | править код]
Общей целью геологоразведочных работ является научно обоснованное, планомерное и экономически эффективное обеспечение добывающей промышленности разведанными запасами полезных ископаемых, изучение способов их полной, комплексной и экономически рациональной выемки в процессе эксплуатации месторождений с учётом охраны окружающей среды. Геологические службы, геологические организации также оказывают услуги по изучению недр для строительства и эксплуатации подземных сооружений, для нужд сельского хозяйства. Инженерно-геологическое изучение отдельных районов, территорий также необходимо для подготовки подземного захоронения вредных веществ и отходов производства, сброса сточных вод и решения других вопросов.
Геологоразведочные работы предполагают комплексное ведение работ, то есть наряду с поисками и разведкой месторождений полезных ископаемых также изучаются все сопутствующие минеральные компоненты, выясняются возможности их утилизации, выполняются гидрогеологические, горнотехнические, инженерно-геологические и другие исследования, изучаются природно-климатические, географо-экономические, социально-экономические, геолого-экономические условия освоения месторождений.
Содержание геологоразведочных работ[править | править код]
В состав геологоразведочных работ входят:
- Региональные и крупномасштабные виды съёмок: геологическая, топографическая, геодезическая, геофизическая, геохимическая, аэрофотосъёмка, космическая и другие;
- Различные виды поисковых, геологоразведочных, гидрогеологических и инженерно-геологических работ, аналитико-минералого-технологические, геолого-экономические, научно-тематические и другие исследования.
В зависимости от целей процесс геологического изучения недр подразделяется на 3 этапа и 5 стадий[3]:
Этап I. Работы общегеологического и минерагенического назначения
Стадия 1. Региональное геологическое изучение недр и прогнозирование полезных ископаемых.
Этап II. Поиски и оценка месторождений
Стадия 2. Поисковые работы.
Стадия 3. Оценочные работы.
Этап III. Разведка и освоение месторождения
Стадия 4. Разведка месторождения.
Стадия 5. Эксплуатационная разведка.
Раньше работы проводились в 6 стадий:
- Первая стадия включала региональные геолого-съёмочные и геофизические работы. По их результатам выделялись перспективные на обнаружение полезных ископаемых крупные структуры, толщи и площади, рекомендуемые для постановки специализированных поисковых работ.
- Вторая стадия геологоразведочных работ — непосредственно поиски месторождений — была направлена на обнаружение месторождений определённых видов полезных ископаемых. Поиск месторождений выполнялся в три этапа:
- Общие поиски с целью выявления площадей и участков, потенциально перспективных на нахождение месторождений полезных ископаемых;
- Детальные поиски на площадях, где были обнаружены перспективные проявления полезных ископаемых или вероятность их открытия получила достаточное геологическое обоснование;
- Поисково-оценочные работы — комплекс структурно-геологических, геофизических и геохимических исследований с применением горных выработок и буровых скважин. По результатам этого этапа давалась оценка возможного промышленного значения выявленного месторождения (или отбраковывались проявления полезных ископаемых, не имеющие такого значения). При положительных результатах подсчитывались запасы категории С2, давалась количественная оценка прогнозных ресурсов полезных ископаемых, составлялось технико-экономическое обоснование о целесообразности продолжения дальнейших геологоразведочных работ.
- Третья стадия геологоразведочных работ — предварительная разведка, в процессе которой определялось промышленное значение месторождения: устанавливались общие параметры месторождения, формы и размеры основных тел полезных ископаемых, основные особенности условий их залегания, качество и технологические свойства полезных ископаемых, предварительная характеристика условий разработки и т.п. По результатам проведённых работ подсчитывались по категориям С1, и С2 запасы полезных ископаемых, разрабатывались и утверждались временные кондиции на минеральное сырьё, составлялось технико-экономическое обоснование целесообразности проведения детальной разведки.
- Четвёртая стадия — детальная разведка — осуществлялась только на месторождениях или отдельных их участках, промышленная ценность которых доказана предварительной разведкой. Последовательность проведения детальной разведки на каждом месторождении согласовывалась с заинтересованными горнодобывающими министерствами и ведомствами и осуществлялась в соответствии с планом промышленного освоения отдельных объектов и их частей. В результате детальной разведки месторождение должно было быть подготовлено для промышленного освоения в соответствии с требованиями к степени его изученности, установленными классификациями запасов месторождений и прогнозных ресурсов полезных ископаемых. Для месторождений твёрдых полезных ископаемых подсчёт запасов, выявленных в результате детальной разведки, производился по категориям А, В, С1 и С2.
- Пятая стадия — доразведка месторождений — проводился в пределах горного отвода на недостаточно детально изученных частях месторождений полезных ископаемых, вовлечённых в промышленное освоение. Стадия включала работы по последовательному (в увязке с планами развития эксплуатационных работ) переводу запасов категорий С1 и С2, в более высокие категории, а также подсчёт вновь выявленных запасов.
- Шестая стадия — эксплуатационная разведка — совмещается с проходкой горно-подготовительных выработок. Эксплуатационная разведка предшествует очистным работам и служит для обеспечения текущей добычи полезных ископаемых на разрабатываемых месторождениях. На данной стадии уточняются полученные при детальной разведке данные о морфологии, внутреннем строении, условиях залегания тел полезных ископаемых и их качестве.
По результатам геологоразведочных работ подсчитываются и утверждаются в установленном порядке запасы полезных ископаемых, производится прогнозная оценка минеральных ресурсов.
Геологоразведочные работы на нефть и газ состоят из двух этапов: поискового и разведочного.
- Поисковый этап подразделён на три стадии:
- А — Региональные геолого-геофизические работы. Включают мелкомасштабные геологические и структурно-геоморфологические съёмки в комплексе с геохимическими, гидрогеологическими и другими исследованиями, аэромагнитную и гравиметрическую съёмки, электроразведку и сейсморазведку, а также бурение опорных, параметрических и структурных скважин;
- Б — Подготовка площадей (структур) к глубокому поисковому бурению. Включает структурную геологическую съёмку среднего и крупного масштабов, детальную сейсморазведку, в необходимых случаях также гравиразведку, электроразведку, газовую съемку, структурное и параметрическое бурение, оценку прогнозных ресурсов и запасов категории С2;
- В — Поиски месторождений (залежей). Данная стадия включает бурение, комплексные геолого-геофизические исследования и опробование поисковых скважин. По полученным на поисковом этапе результатам подсчитываются запасы категорий С1, и С2 и проводится предварительная геолого-экономическая оценка залежей и месторождений для обоснования проведения или прекращения дальнейших разведочных работ.
- Задачей разведочного этапа является подготовка месторождения к разработке. Комплексными геофизическими и другими методами в пробуренных скважинах, изучается структура месторождения, выделяются продуктивные пласты, определяются возможные дебиты нефти, газа, конденсата, воды, пластовое давление и другие показатели. Данные показатели используются для проектирования разработки месторождения, обоснования капитальных вложений.
Геологоразведочные работы на подземные воды проводятся аналогично первым четырём стадиям для месторождений твёрдых полезных ископаемых, но с учётом специфичных для них условий формирования, особенностями залегания в недрах, техники и технологии извлечения и использования. В частности, в отличие от всех других видов полезных ископаемых, для подземных вод подсчитываются и утверждаются эксплуатационные запасы, измеряемые в единицах объёма, которые могут извлекаться при заданных условиях в единицу времени (м3/сутки, л/с и т.п.). Гидрогеологические исследования являются обязательной составной частью работ по изучению и разведке всех видов месторождений полезных ископаемых, так это позволяет определить степени их обводнённости, расчёта возможных притоков воды при разработке месторождений, решения вопросов об обеспечении водоснабжения проектируемых предприятий.
С 1970-х годов большое развитие получили геологоразведочные работы на морском шельфе (особенно на нефть, газ и россыпи тяжёлых минералов) и в глубоководных районах морей и океанов, где выявлены скопления железомарганцевых конкреций, полисульфидных руд, металлоносных рассолов и илов. Методика поисков и разведки полезных ископаемых на шельфе морей, дне морей и океанов находится в стадии становления и разработок.
Наряду с описанной выше последовательностью проведения геологоразведочных работ и многостадийностью, что, например, было принято в CCCP, применяются методы ускоренной разведки отдельных месторождений полезных ископаемых, имеющих важное народно-хозяйственное или коммерческое значение. В этом случае могут совмещаться стадии предварительной и детальной разведки, детальная разведка с проектированием предприятий по добыче полезных ископаемых.
Геологоразведка в России[править | править код]
По состоянию на 2010 год содержимое недр только на 20% территории страны отражено государственными геологическими картами масштаба 1:200 000, отвечающими современным требованиям, при этом 55% территории нуждается в геологическом доизучении, а 25% – в выполнении всего современного комплекса работ по геологическому картированию.[4] В 2018 году буровая установка LF-230 серии Boart Longyear направлена в Красноярский край к северу от полярного круга.[5]
Согласно долгосрочной программе воспроизводства минерально-сырьевой базы России на 2005-2020 годы в геологические исследования предлагается вложить около 540 млрд руб. бюджетных средств, из которых 47% приходится на геологоразведку углеводородов.[6]
В России финансирование геологоразведки осуществляется как за счёт бюджетных средств, так и частными компаниями. В 2009 году объём бюджетного финансирования геологической разведки составил 18 931 млн руб. (в 2008 году — 21 975 млн руб.). По углеводородному сырью в 2009 году было всего разведано месторождений на 620 млн т, в 2008 году — на 589 млн т.[7]
Общий объём инвестиций в геологоразведку в 2010 г. состоял из средств частных инвесторов, направленных непосредственно на геологоразведочные работы – научно-исследовательскую деятельность, оценочные, поисковые и разведочные работы на сумму 24.5 миллиарда рублей; на доразведку и мониторинг действующих месторождений – 6 миллиардов рублей; средства государственного бюджета – 5.4 миллиарда рублей. Средства бюджетов субъектов Федерации – 200 миллионов рублей. Итого совокупный объём инвестиций в геологоразведку составил 36.1 миллиарда рублей.[8]
См. также[править | править код]
- Разведка месторождений полезных ископаемых
- Геологическая служба
Примечания[править | править код]
- ↑ Орфографическая комиссия РАН в последнее время рекомендует писать слово через дефис. Однако практически все авторитетные источники и Большой толковый словарь русского языка используют написание слова слитно
- ↑ Геологоразведочные работы. // Горная энциклопедия
- ↑ Распоряжение Министерства природных ресурсов от 5 июля 1999 г. N 83-р «Об утверждении положения о порядке проведения геологоразведочных работ по этапам и стадиям (твёрдые полезные ископаемые)»
- ↑ Е. А. Козловский, С. Л. Горохов, А. Д. Писарницкий, И. В. Шпуров, Д. А.Ушивцева. Стратегия государственного управления недропользованием в Российской Федерации. — Тюмень, ФГУП «ЗапСибНИИГГ», 2009
- ↑ Для буровых зданий ДТХЗ не существует недоступных мест!. dthz.ru. Дата обращения 6 июля 2018.
- ↑ Государство пошло в геологоразведку // Газета “Коммерсантъ”, №182 (3758), 05.10.2007
- ↑ Юлия Говорун. «Нельзя продать — и забыть», — Юрий Трутнев, министр природных ресурсов и экологии // Ведомости, № 14 (2532), 28 января 2010
- ↑ Алексей Некрасов, глава департамента твердых полезных ископаемых Федерального государственного учреждения «Госкомиссия по запасам ископаемых»: Отечественная геологоразведка: проблемы остаются
Ссылки[править | править код]
- – портал Федерального агентства по недропользованию о планировании и проектировании геолоразведочных работ с базой данных нормативов Роснедр
Источник
ГЕОФИЗИ́ЧЕСКИЕ МЕ́ТОДЫ РАЗВЕ́ДКИ (ГМР), методы, использующие пространственно-временны́е изменения геофизич. полей в земной коре для поиска и разведки полезных ископаемых, контроля за эксплуатацией их месторождений. ГМР называют также разведочной или прикладной геофизикой. ГМР тесно связаны с общей геологией, геологией полезных ископаемых, геохимией, геотектоникой, стратиграфией и минералогией. В соответствии с поставленными задачами выделяют отд. направления прикладной геофизики: глубинная, нефтегазовая, рудная и нерудная, инженерно-геологич., гидрогеологич., военная, мерзлотно-гляциологич., археологич. и геоэкологическая.
По видам измеряемых полей выделяют следующие группы ГМР: гравитационная разведка (гравитационное поле); магнитная разведка (магнитное поле); терморазведка (тепловое поле); электрическая разведка и электромагнитная (радарная) съёмка (электрич. и электромагнитное поля); сейсмическая разведка и геоакустика (поле упругих волн); ядерная геофизика (поля нейтронов, гамма-квантов, нейтрино, потоки тяжёлых частиц).
ГМР используют пассивные и активные схемы измерений. Пассивные методы основаны на регистрации характеристик естественных физич. полей (темп-ры, теплового потока, ускорения свободного падения или силы тяжести, радиоактивности, вектора индукции магнитного поля, интенсивности эмиссии сейсмич. активности). Активные методы используют искусств. возбуждение массива пород с помощью источника упругих (сейсмич. или акустич.), электромагнитных волн, электрич. тока, потоков ионизирующих излучений и регистрацию отклика геологич. среды на посланное излучение.
Осуществление ГМР включает три стадии: проведение полевых наблюдений (измерений) характеристик физич. полей по заданной сети профилей; компьютерная обработка результатов измерений с использованием спец. программного обеспечения; геологич. интерпретация результатов измерений, заключающаяся в построении физико-геологич. модели изучаемого геологич. объекта.
Возможность использования ГМР для решения разнообразных геологич. задач основана на конкретных функциональных либо корреляционных зависимостях между значениями геофизич. параметров и искомыми свойствами геологич. среды. При решении задач геофизич. разведки выделяют однородные по физич. характеристикам слои, устанавливают морфологию их границ и далее, с использованием имеющейся геологич. информации, отождествляют выделенные слои с определёнными типами горных пород, в т. ч. выявляют участки недр, предположительно содержащие те или иные виды полезных ископаемых.
Теория ГМР основана на фундам. представлениях механики и электродинамики сплошных сред, теории гравитационного и магнитного полей Земли, теории колебаний и волн. При решении геофизич. задач нефтяной и газовой геологии важную роль играют знания физики пористых и трещиноватых флюидонасыщенных сред.
Геофизич. исследования основаны на решении т. н. прямых и обратных задач геофизики. Под прямой задачей подразумевают теоретич. или эксперим. оценку реакции среды с заранее заданными физич. свойствами и геометрич. характеристиками на посланный в неё сигнал. При решении прямых задач широко используют аппарат математич. физики, численные методы математич. моделирования, в т. ч. метод конечных разностей, конечных элементов, метод Монте-Карло и др. Решение обратной задачи геофизики состоит в определении геометрии и свойств горных пород, находящихся в пределах изучаемого объекта на основе анализа измеренного геофизич. поля, т. е. по результатам эксперимента. Математич. аппарат, используемый для решения обратных задач геофизики, включает теорию потенциалов, теорию волновых явлений и др. На практике обратные задачи решают, применяя специализир. программное обеспечение.
Детальность исследований недр Земли с помощью совр. аппаратуры во многом зависит от используемых технологий. Так, глубина исследуемого слоя колеблется от метров до десятков километров. Полевые геофизич. измерения проводят с помощью спец. аппаратуры, включающей блоки электронного управления, источники излучения сигналов, детекторы (приёмники) сигналов, бортовые вычислит. машины для предварит. обработки информации. Совр. геофизич. аппаратура размещается на спец. автомобилях, н.-и. морских или речных судах, вертолётах, самолётах, а также на борту обитаемых и необитаемых орбитальных космич. станций.
Спец. и весьма эффективной технологией изучения Земли являются геофизические исследования скважин. Аппаратура для таких исследований включает, кроме наземных электронных блоков, спец. глубинные приборы (зонды), опускаемые на заданную глубину с помощью геофизич. кабеля. При создании геофизич. аппаратуры используются высокопрочные композитные материалы, легированные стали, термостойкие резины и пластики, а также программируемые логич. микроэлектронные схемы.
Спец. измерительные системы создаются для полевой (наземной), морской (см. Морская геофизическая разведка), аэрокосмич. (см. Аэрогеофизическая съёмка), скважинной геофизики и шахтно-рудничной геофизики.
ГМР являются важнейшей составной частью технологии всех стадий геолого-разведочного процесса и служат информац. основой для его оптимизации. Применение тех или иных методов зависит от конкретных геологич. задач. Так, при региональном изучении глубинных зон земной коры эффективно используются аэрокосмич., мор. и глубинные полевые методы разведки. При поисках месторождений преобладает комплексное использование полевых методов (сейсмич. разведка, электрич. разведка и др.). Конечная цель данной стадии – определение мест заложения скважин, прогноз строения геологич. разреза и контуров месторождений. На стадии оценки месторождений и подсчёта запасов широко применяются геофизич. исследования скважин. Рациональным является также совместное использование ГМР и геохимич. методов разведки.
Переход геологич. разведки во всё более сложные геолого-геофизич. условия (большие глубины, высокие темп-ры и давления и др.) требует создания более совершенных технологий. Разрабатываются многофункциональные комплексные и комбинир. приборы, а также принципиально новые методы геофизич. исследований, основанные на эффектах преобразования разл. физич. полей, в т. ч. на нелинейных физич. явлениях. Создаются новые геофизич. технологии, использующие управляемое воздействие на геологич. среду и наблюдения в режиме мониторинга состояния участков недр.
Историческая справка
Первые идеи о возможности применения геофизич. (сейсмич. и магнитных) наблюдений для решения прикладных задач геологии были высказаны в 18 в. М. В. Ломоносовым, К. Гауссом, Ш. Кулоном и др. В кон. 19 в. Л. фон Этвёш изобрёл гравитационный вариометр, получивший применение в разведке полезных ископаемых. В 1906–16 Д. В. Голубятников впервые выполнил температурные измерения в нефтяных скважинах для решения ряда геологич. и нефтепромысловых задач. В те же годы Б. Б. Голицын, один из основателей сейсмологии, сконструировал и внедрил в практику электродинамич. сейсмограф. Начало широкого применения геофизич. исследований скважин связано с работами франц. учёных К. и М. Шлюмберже, предложивших и впервые внедривших в нефтеразведку метод электрич. сопротивления (1926–28). Осн. заслуга в создании совр. геофизич. технологий принадлежит рос., франц., амер. и канадской школам разведочной геофизики.
Источник