Генетический код мутация вредные и полезные мутации

Генетический код мутация вредные и полезные мутации thumbnail

Генетическая мутация представляет собой изменение в последовательности ДНК, которая составляет ген, что означает, что последовательность отличается от той, которая встречается у большинства людей.

Другими словами, информация гена, унаследованная от родителей человека, может действовать иначе, чем она была предназначена. Представьте, что вы меняете буквы в словах — это может сделать предложение более не понятным или дать ему совершенно другое значение.

Эти виды мутаций на самом деле довольно распространены; они развиваются как виды. Однако мутации нельзя назвать «нормальными», поскольку они происходят совершенно случайно. Например, мутация может произойти, если клетка не расщепляется правильно на ранних стадиях жизни плода. Влияние окружающей среды также является фактором. Хотя некоторые мутации наследуются, другие могут влиять только на ваше собственное тело и могут иметь весьма серьезные последствия, такие как увеличение риска развития рака. Конечно, не все генетические мутации имеют отрицательные результаты, а некоторые могут даже иметь свои преимущества.

Итак, вот 8 из наиболее распространенных генетических мутаций — есть ли у вас один из них?

Рыжие волосы

В прежние времена рыжеволосые женщины считались ведьмами, так как этот цвет волос был настолько редок. Сегодня, по оценкам, 2-6% американцев имеют рыжие волосы. В Ирландии этот показатель составляет около 10%. Рыжие волосы вызваны геном, ответственным за то, что пигмент эумеланин неактивен. Поскольку эумеланин придает волосам темный цвет, это недействительность этого гена приводит к тому, что другой пигмент становится доминирующим, что означает, что у человека вместо этого будут светловолосые или рыжие волосы.

Непереносимость лактозы

Лишь очень немногие европейцы проявляют нетерпимость к молоку. Однако люди из Восточной Азии чаще страдают от непереносимости лактозы. Вопреки распространенному мнению, непереносимость лактозы на самом деле не является генетической мутацией — противоположность на самом деле верна. Это потому, что мать-природа предназначала молоко, чтобы быть средством для кормления младенцев. По мере того, как мы становимся старше, наша способность переваривать молочные продукты и продукты на молочной основе ухудшается. Единственными исключениями являются люди с европейским фоном. Предполагается, что случайная генетическая ошибка между каменным веком и началом выращивания крупного рогатого скота привела к тому, что люди использовали животное в качестве дополнительного источника белка.

Покраснение от алкоголя

У некоторых людей щеки становятся красными, когда они пьют алкоголь. Это вызвано мутацией гена ALDH2, в результате чего кровеносные сосуды на лице человека расширяются и оставляют их щеки красными. Хотя красное лицо после выпивки бокалом вина обычно безвредно, оно также может указывать на «реакцию флеш-спирта», то есть на алкогольную непереносимость. В этом случае организму требуется значительно больше времени для разрушения токсичных агентов в спирте. Со временем это может привести к проблемам со здоровьем. Если у вас есть головные боли или болезнь, даже после употребления небольшого количества алкоголя, обратитесь к врачу.

Голубые глаза

От Элтона Джона до Лу Рида многие музыканты пели об этом популярном цвете глаз на протяжении многих лет. Однако мало кто знает, что голубые глаза на самом деле были результатом генетической мутации от 6000 до 10 000 лет назад. До этого предполагалось, что у всех в мире были карие глаза. Люди имеют голубые глаза, когда ген, ответственный за пигмент меланин, неактивен. Это справедливо и для зеленых глаз и сероглазых людей, хотя у них только меньшее количество меланина. Поскольку меланин является естественным фильтром солнца, люди из северных стран, скорее всего, имеют светлые глаза. Все они, вероятно, произошли от одного человека, у которого была эта случайная генетическая мутация.

Красно-зеленая цветовая слепота

Является ли яблоко красным или зеленым? Это сложный вопрос для людей с красно-зеленой цветовой слепотой. Из-за недостаточно развитых или отсутствующих конусных клеток в их сетчатке, пострадавшие не могут отличить два цвета и имеют реальную проблему. К счастью, большинство предметов помечены на стойке для фруктов и овощей.

Короткий спящий ген

У вас нет проблем с тем, чтобы ложится спать поздно, и при этом рано вставать — у вас, вероятно, есть короткий спящий ген! Люди с этим геном нуждаются только в трех-четырех часах сна, чтобы чувствовать себя хорошо на следующий день. Это означает, что у вас есть четыре дополнительных часа в день, чем у обычного человека без этой генетической аномалии. Неплохо, а?

Противомалярийный ген

Хотя это больше не является серьезной проблемой для здоровья в Европе, малярия продолжает стоить жизни многим людям в тропических и субтропических регионах. Однако это не влияет на людей с антималярийным геном в этих областях. К сожалению, это не причина для радости, так как эти люди также страдают от серповидноклеточной болезни, наследственной болезни, которая заставляет красные кровяные клетки терять свою эластичность. Это может привести к тому, что красные кровяные клетки застрянут в кровеносных сосудах и заставят их лопнуть.

Отсутствие зубов мудрости

Все меньше людей имеют зубы мудрости. Эти зубы происходят от времени, когда у людей были более широкие челюсти. Самый старый скелет, найденный без зубов мудрости, составляет 350 000 лет, что свидетельствует о том, что эта генетическая мутация существует некоторое время. Предполагается, что развитие началось в Китае, так как именно здесь большинство людей не имеют зубов мудрости. Но означает ли это, что зубы мудрости исчезнут в течение ближайших нескольких столетий? Не совсем — для этого понадобится довольно впечатляющая генетическая мутация.

Итак, вы или кто-то из вас имеет какие-либо из перечисленных выше генетических мутаций? Скорее всего, это так. Как мы уже говорили, генетические мутации чаще встречаются, чем вы могли подумать, — и все, что у вас есть, являются частью комбинации, которая делает вас уникальным.

Источник

Например, именно генетическая мутация привела к уплотнению костей у отдельных людей — среди нас есть те, кто ни разу в жизни не ломал ни ног, ни рук, даже попадая в автомобильные аварии или занимаясь экстремальным спортом. Именно генетическая мутация эритроцитов подарила некоторым людям устойчивость к малярии — бичу тропических стран. Это примеры полезных мутаций, нейтральные же мутации делают нас разными, в том числе и на клеточном уровне.

1. Группы крови — ступени эволюции

Согласно теории польского ученого Людвига Хирсцфельда, разные группы крови образовались из одной  — первой — в результате мутаций генов. Случилось это не сразу — образование каждой новой группы крови стало своеобразной вехой, обозначающей этапы эволюции человека.

Группа крови О(I)
Хирсцфельд полагает, что все первобытные люди имели одну группу крови — по современной классификации это I группа. Зародилась она около 40 тысяч лет тому назад, и ученые иногда называют ее «первокровь» — ведь именно из нее путем нейтральных мутаций и появились остальные три группы. А еще первая группа крови является универсальной, и, как правило, подходит для переливания любому человеку, вне зависимости от того, какая группа крови у него.

Группа крови А(II)
Эта группа крови появилась тогда, когда древний человек сменил образ жизни и начал обрабатывать землю. Соответственно, изменилось и его питание: если раньше человек питался мясом и плодами, то теперь в рационе появились злаки и овощи. Произошло это приблизительно 25 тысяч лет назад на территории современной Европы. Кстати, и сейчас людей со второй группой крови больше всего именно в Европе и Северной Америке.

Группа крови В(III)
Следующим этапом развития, вызвавшим появление новой группы крови, стало появление в рационе человека молочных продуктов. Случилось это около 10 тысяч лет назад на территории современной Азии. Третья группа крови и сегодня наиболее рапространена среди жителей Средней Азии, Индии, Гималаев и Китая.

Читайте также:  Что можно сделать из ягод кизил и чем он полезен

Группа крови АВ(IV)

Эта группа крови — самая молодая, и ее появление не связанно с генетической мутацией — она является результатом браков между представителями II и III групп, начавшихся в эпоху Великого переселения народов. Считается, что люди с IV группой особенно устойчивы к аллергическим и аутоиммунным заболеваниям, но чаще заболевают вирусными инфекциями. Четвертая группа крови встречается реже всего, например, в Европе ее имеют всего 6% жителей. А еще человек с IV группой — так называемый «универсальный реципиент» — как правило, ему подходит для переливания любая кровь.

2. Глаза — зеркало души. И не только

Несколько лет назад группа ученых из университета Копенгагена под руководством Ганса Эйберга выяснила, что голубые глаза — это результат генной мутации, благодаря которой резко сокращается содержание пигмента, придающего цвет радужной оболочке глаз, — меланина. Первая такая мутация произошла приблизительно 6-10 тысяч лет назад, и до этого момента голубых глаз у людей попросту не было — все были кареглазыми. Ученые определили, что мутация затронула ген OCA2 в человеческих хромосомах, причем изменила его частично, благодаря чему меланин в радужной оболочке все-таки накапливается, но его слишком мало, чтобы придать глазу насыщенный карий цвет.

Считается, что у всех обладателей голубых глаз — общий предок, древний человек, проживавший когда-то на берегу Черного моря. Единственный вопрос, на который ученые пока что не могут ответить, — каким образом одиночная мутация получила такое широкое распространение во всем мире.

Собственно голубого или синего пигмента в радужной оболочке глаза нет — это волокна соединительной ткани (стромы), образующей радужку, рассеивают проходящий через глаз цвет, создавая видимость голубого окрашивания глаз. И чем больше волокон соединительной ткани — тем светлее голубой цвет.

Серые глаза — результат еще большей плотности соединительной ткани радужной оболочки, чем при голубых глазах. Зеленый цвет дает сочетание недостатка меланина, голубоватого оттенка стромы и желтого пигмента липофусцина. Янтарные глаза — результат малого количества меланина и большого количества липофусцина.

Интересным феноменом является гетерохромия — различная окраска глаз у одного человека. Обычно она бывает врожденной и передается по наследству, иногда она является одним из симптомов генетических заболеваний.

3. Абсолютный слух

Люди с абсолютным слухом нередко вызывают зависть. Ведь абсолютный слух — не просто острый, это совершенно уникальное явление. Так, если обычный человек с хорошим и даже очень хорошим слухом может определить высоту звука лишь сравнивая его с каким-либо эталоном, то «абсолютнику» никакие эталоны не нужны, он с легкостью отличает звуки один от другого точно так же, как остальные люди различают цвета. Для человека с абсолютным слухом каждый звук имеет свой, неповторимый тон, собственное «лицо».

Чтобы развить в себе абсолютный слух, многие музыканты работают годами — и не всегда добиваются успеха. С другой стороны, некоторые дети обладают этим уникальным феноменом уже с рождения. Именно это и навело исследователей из Калифорнийского университета на мысль, что за наличие уникального слуха отвечает определенный ген. Группа ученых под руководством Джейн Гитчер ищет и изучает носителей абсолютного слуха. Уже исследованы более 2 тысяч человек. Выяснилось, что с абсолютным слухом рождается примерно один ребенок из 10 тысяч, и что за уникальные слуховые возможности действительно отвечает один или несколько генов в цепочке ДНК. Ученым осталось определить, когда впервые произошла эта мутация, и, возможно, что ее спровоцировало. Абсолютный слух с годами обостряется еще сильнее — люди начинают различать звуковые полутона.

4. Левши и правши

Давно известно, что то, какой рукой предпочитает пользоваться человек, зависит от развития определенных структур его головного мозга. Правшами «руководит» левое полушарие, а левшами — наоборот, правое. Но лишь недавно международная группа исследователей из Великобритании и Нидерландов выяснила, что отвечает за предпочтительное пользование той или иной рукой набор генов нескольких участков ДНК, ответственных за общую ассиметрию организма. Сильнее всего с лево- или праворукостью оказался связан ген PCSK6. Кстати, в эксперименте на мышах «выключение» этого гена привело к «зеркальному» расположению органов в их теле — например, сердце оказалось справа, а не слева.

Исследователи подчеркивают, что в некоторых случаях привычка пользоваться той или иной рукой зависит не только от генетических факторов. На нее могут повлиять определенные факторы окружающей среды, заболевания и социальное влияние (например, родителей, стремящихся во что бы то ни стало «переучить» левшу).

5. Язык трубочкой и шевеление ушами

Ранее ученые были уверены, что возможность свернуть язык в трубочку является следствием генетической мутации. Но ряд исследований на однояйцевых близнецах показал, что причина таких возможностей языка некоторых людей — не только генетика, но и факторы окружающей среды.

В отличие от повышенной гибкости языка, возможность шевелить ушами не имеет отношения к генетической мутации. Шевелить ушами могут те, у кого есть «добавочный» нерв от ствола головного мозга к лицевым мышцам. Нерв этот — не признак мутации, а атавизм, сохранившийся у некоторых людей от животных, которые, как известно, шевелят ушами очень активно. Кстати, если шевелить ушами вы не умеете, но очень хотите научиться, попробуйте развить нужные мышцы при помощи гимнастики — вы ведь замечали, как уши немного шевелятся, когда вы широко улыбаетесь.

Генные мутации происходят постоянно, в живой природе невозможно воспроизвести генетически идентичные организмы. Благодаря новым соединениям генов наш мир и люди, населяющие его, столь прекрасны и не похожи друг на друга.

В начале февраля ученые из Центра геномной биоинформатики им. Добржанского Петербургского госуниверситета (СПбГУ) сообщили, что собираются составить «геномный портрет» русского человека. В середине месяца исследователи НИИ медицинской генетики в Томске представили разработку, которая позволяет определить место рождения человека с точностью до района.

Обнаружили ошибку? Выделите ее и нажмите Ctrl+Enter.

Источник

Номенклатура генетических мутаций. Обозначение мутаций генов

Важнейшим элементом номенклатуры генных мутаций является общепринятое краткое обозначение каждой из 20 аминокислот, входящих в состав белка. Оно может осуществляться либо путем записи 3 ключевых букв английского названия аминокислоты, либо условным однобуквенным символом. Современная номенклатура предполагает преимущественное использование однобуквенных обозначений аминокислот.

Для обозначения мутаций используется стандартизованная нумерация аминокислот в белке и нук-лео гидов в составе гена. Отсчет аминокислот ведется с первого положения в полипептидной цепочке, отсчет нуклеотидов начинается с первого нуклеотида в составе первого смыслового кодона и ведется на протяжении всей кодирующей области (исключая нитроны). Нуклеотиды, находящиеся в составе экзонов, обозначаются заглавными буквами (А, Т, С, G), в составе интронов – маленькими (a, t, с, g).

Нуклеотиды, входящие в состав интронов или других некодирующих областей гена, нумеруются исходя из их расположения по отношению к ближайшему экзону: если нуклеотид расположен левее экзона (т.е против рамки считывания), он записывается со знаком «-», если он находится правее экзона (вдоль рамки считывания), он записывается со знаком «+». Например, запись «-3» означает третий нуклеотид слева от начала первого экзона (т.е. от первого кодирующего нуклеотида); запись «15—1» означает первый интронный нуклеотид слева от экзона, начинающегося 15-м нуклеотидом; запись «34+3» означает третий нуклеотид интрона, следующего за экзоном, оканчивающимся 34-м нуклеотидом.

генетические мутации

Запись мутаций может осуществляться как посредством обозначения нуклеотидных изменений в ДНК, так и посредством обозначения изменений аминокислотного состава белка (в тех случаях, когда такое изменение имеет место). В случае первого описания в литературе определенной мутации ее обозначение должно даваться как в нуклеотидной, так и в аминокислотной системе записи (если это возможно).

Относительно несложной является регистрация точковых мутаций. Для записи нуклеотиднои замены приводятся номер мутировавшего нуклеотида, обозначение исходного нуклеотида и (через стрелку) -обозначение нового нуклеотида, например: 236G—»T (замена G на Т в положении 236 экзона); 1174+3 А->С (замена А на С в 3-м положении интрона, примыкающего справа к 1174-му нуклеотиду экзона) и т.д. Когда известна полная геномная последовательность, интронные мутации могут обозначаться символом «IVS» и номером соответствующего интрона. Так, если в указанном выше примере 1174-й нуклеотид замыкает 5-й экзон, то предствленная интронная мутация может быть обозначена как IVS5+3A—»C (замена А на С в 3-м положении 5-го интрона).

– Также рекомендуем “Обозначение аминокислотных замен, делиций. Отметка о точковых мутациях”

Оглавление темы “Деонтология и этика медицинской генетики”:

1. Генетический риск. Диагностика генетического риска

2. ДНК диагностика генетического риска. Точность косвенной ДНК-диагностики

3. Прогностическое тестирование генетической мутации. Методы диагностики носительства мутаций

4. Гонадный мозаицизм. Диагностика соматического и гонадного мозаицизма

5. Выявление у плода мутантной хромосомы. Прогностическое ДНК тестирование

6. Этические моменты ДНК тестирования. Социальные последствия ДНК тестирования

7. Деонтология хореи Гентингтона. Медицинская этика выявления хореи Гентингтона

8. Организация медицинского консультирования. Этические принципы ДНК диагностики

9. Номенклатура генетических мутаций. Обозначение мутаций генов

10. Обозначение аминокислотных замен, делиций. Отметка о точковых мутациях

Источник

Наследственная (генотипическая) изменчивость проявляется в изменении генотипа особи, поэтому передается при половом размножении потомкам.

Наследственная изменчивость обусловлена возникновением разных типов мутаций и их комбинаций в последующих скрещиваниях. В каждой достаточно длительно существующей совокупности особей спонтанно и ненаправленно возникают различные мутации, которые в дальнейшем комбинируются более или менее случайно с уже имеющимися вариантами генов.

Виды наследственной изменчивости:

  • комбинативная: обусловленная перекомбинированием генов в результате мейоза и оплодотворения;
  • мутационная: обусловленная возникновением мутаций. 

Комбинативная изменчивость

Комбинативной называют изменчивость, в основе которой лежит образованиерекомбинаций, т. е. таких комбинаций генов, которых не было у родителей.

В основе комбинативной изменчивости лежит половое размножение организмов, вследствие которого возникает огромное разнообразие генотипов. Практически неограниченными источниками генетической изменчивости в ходе полового размножения эукариот служат три процесса:

  1. Независимое расхождение гомологичных хромосом в анафазе первого деления мейоза. Именно независимое комбинирование хромосом при мейозе является основой третьего закона Менделя. Появление зеленых гладких и желтых морщинистых семян гороха во втором поколении от скрещивания растений с желтыми гладкими и зелеными морщинистыми семенами — пример комбинативной изменчивости.
  2. Взаимный обмен участками гомологичных хромосом, или кроссинговер, в профазе первого деления мейоза. Он создает новые группы сцепления, т. е. служит важным источником генетической рекомбинации аллелей. Рекомбинантные хромосомы, оказавшись в зиготе, способствуют появлению признаков, нетипичных для каждого из родителей.
  3. Случайное сочетание гамет при оплодотворении.

Эти источники комбинативной изменчивости действуют независимо и одновременно, обеспечивая при этом постоянную «перетасовку» генов, что приводит к появлению организмов с другими генотипом и фенотипом (сами гены при этом не изменяются). Однако новые комбинации генов довольно легко распадаются при передаче из поколения в поколение. Комбинативная изменчивость является важнейшим источником всего колоссального наследственного разнообразия, характерного для живых организмов. Однако она, как правило, не порождает  стабильных изменений в генотипе, которые необходимы, согласно эволюционной теории, для возникновения новых видов. Стабильные, долгоживущие изменения возникают в результате мутаций.

Мутационная изменчивость

Мутация — это устойчивое и ненаправленное изменение в геноме.

Мутация сохраняется неограниченно долго в ряду поколений.

Значение мутаций в эволюции огромно — благодаря им возникают новые варианты генов. Говорят, что мутации — это сырой материал эволюции. Мутации носят индивидуальный (каждая мутация в отдельной молекуле ДНК возникает случайно) и ненаправленный характер.

Мутации могут как приводить, так и не приводить к изменению признаков и свойств организма.

Мутации возникают постоянно на протяжении всего онтогенеза человека. Чем на более раннем этапе развития организма возникнет конкретная мутация, тем большее влияние она может оказать на развитие организма (рис. 1).

Рис. 1. Влияние мутаций в разные периоды онтогенеза

Мутации делятся на:

  • нейтральные;
  • вредные;
  • полезные.

Современные генетики считают, что большинство вновь возникающих мутацийнейтральны, то есть никак не отражаются на приспособленности организма. Нейтральные мутации происходят в межгенных участках — интронах (участках ДНК, не кодирующих белки); либо это синонимичные мутации в кодирующей части гена — мутации, которые приводят к возникновению кодона, обозначающего ту же аминокислоту (это возможно из-за вырожденности генетического кода).

Следующими по частоте являются вредные мутации. Вредоносное действие мутаций объясняется тем, что изменения касаются наследственных признаков, имеющих чаще всего адаптивное значение, т. е. признаков, полезных в данных условиях среды.

Лишь небольшая часть мутаций повышает приспособленность организма, то есть является полезной («ломать не строить»).

Однако вредность и полезность мутаций — понятия относительные, т. к. то, что полезно (вредно) в данных условиях, может оказать обратное действие при изменении условий среды. Именно поэтому мутации являются материалом для эволюции.

Мутагенез — процесс возникновения мутаций.

Мутации могут появиться как в соматических, так и в половых клетках (рис. 2).

Рис. 2. Результат мутаций

Соматические мутации

Генеративные мутации

Не всегда передаются при половом размножении.

Передаются при вегетативном (бесполом размножении).

Передаются по наследству.

Не смотря на то, что мутации возникают постоянно, существует ряд факторов, так называемых мутагенов, увеличивающих вероятность появления мутаций.

Мутагены — факторы, увеличивающие вероятность появления мутаций.

Мутагенами могут быть:

  • химические вещества (кислоты, щелочи и т. п.);
  • температурные воздействия;
  • УФ-излучение;
  • радиация;
  • вирусы.

Канцерогены — факторы, повышающие вероятность возникновения злокачественных новообразований (опухолей) в организме животных и человека.

По характеру изменения генома различают мутации:

  • генные (точечные)
  • хромосомные
  • геномные

ГЕННЫЕ МУТАЦИИ

Генные, или точечные мутации — результат изменения нуклеотидной последовательности в молекуле ДНК в пределах одного гена.

Если такая мутация происходит в гене, это приводит к изменению последовательности иРНК. А изменение последовательности иРНК может привести к изменению последовательности аминокислот в полипептидной цепи. В результате синтезируется другой белок, а в организме изменяется какой-либо признак.

Это наиболее распространённый вид мутаций и важнейший источник наследственной изменчивости организмов.

Существуют разные типы генных мутаций, связанных с добавлением, выпадением или перестановкой нуклеотидов в гене:

  • дупликации — повторение участка гена,
  • вставки — появление в последовательности лишней пары нуклеотидов,
  • делеции  выпадение одной или более пар нуклеотидов,
  • замены нуклеотидных пар — AT -><- ГЦ; AT -><- ЦГ; или AT -><- ТА,
  • инверсии — переворот участка гена на 180°.

Эффекты генных мутаций чрезвычайно разнообразны.

Большая часть из них — нейтральные мутации.

ХРОМОСОМНЫЕ МУТАЦИИ

Хромосомные мутации — это изменения в структуре хромосом. Как правило, их можно выявить и изучить под световым микроскопом.

Хромосомные мутации подразделяются на виды:

– делеция – выпадение участка хромосомы (рис. 6).

Рис. 6. Делеция

– дупликация – удвоение какого-то участка хромосом (рис. 7).

Рис. 7. Дупликация

– инверсия – поворот участка хромосомы на 1800, в результате чего в этом участке гены расположены в последовательности, обратной по сравнению с нормой (рис. 8).  

Рис. 8. Инверсия

– транслокация – перемещение какого либо участка хромосомы в другое место (рис. 9).

Рис. 9. Транслокация

При делециях и дупликациях изменяется общее количество генетического материала, степень фенотипического проявления этих мутаций зависит от размеров изменяемых участков, а также от того, насколько важные гены попали в эти участки.

При инверсиях и транслокациях изменение количества генетического материала не происходит, изменяется лишь его расположение. Подобные мутации нужны эволюционно, так как мутанты часто уже не могут скрещиваться с исходными особями.

ГЕНОМНЫЕ МУТАЦИИ

К геномным мутациям относится изменение числа хромосом:

  • анеуплоидия;
  • полиплоидия.

Анеуплоидия — увеличение или уменьшение числа хромосом в генотипе.

Она возникает при нерасхождении хромосом в мейозе или хроматид в митозе.

Анеуплоиды встречаются у растений и животных и характеризуются низкой жизнеспособностью.

Вследствие нерасхождения какой-либо пары гомологичных хромосом в мейозе одна из образовавшихся гамет содержит на одну хромосому меньше, а другая на одну хромосому больше, чем в нормальном гаплоидном наборе. При слиянии с другой гаметой возникает зигота с меньшим или большим числом хромосом по сравнению с диплоидным набором, характерным для вида. Пример — трисомия 21 (лишняя 21-я хромосома), приводящая к синдрому Дауна (рис. 3).

Рис. 3. Синдром Дауна

Полиплоидия — это кратное увеличение гаплоидного набора хромосом (Зn, 4n и т. д.).

Чаще всего появляется при нарушении расхождения хромосом к полюсам клетки в мейозе или митозе под действием мутагенных факторов.

Она широко распространена у растений и простейших и крайне редко встречается у животных. 

С увеличением числа хромосомных наборов в кариотипе возрастает надёжность генетической системы, уменьшается вероятность снижения жизнеспособности в случае мутаций. Поэтому полиплоидия нередко влечёт за собой повышение жизнеспособности, плодовитости и других жизненных свойств (рис. 4).

Рис. 4. Обычное и полиплоидное растение энотеры

В растениеводстве это свойство используют, искусственно получая полиплоидные сорта культурных растений, отличающиеся высокой продуктивностью.

У высших животных полиплоидия, как правило, не встречается (известны исключения среди амфибий, у скальных ящериц). 

В результате геномных мутаций происходит изменение числа хромосом внутри генома. Это связано с нарушением работы веретена деления, таким образом, гомологичные хромосомы не расходятся к разным полюсам клетки.

В результате одна клетка приобретает в два раза больше хромосом, чем положено (рис. 1):

Рис. 1. Геномная мутация

Гаплоидный набор хромосом остается прежним, изменяется только количество комплектов гомологичных хромосом(2n).

В природе такие мутации нередко закрепляются в потомстве, они встречаются чаще всего у растений, а также у грибов и водорослей (рис. 2).

Рис. 2. Высшие растения, грибы, водоросли

Такие организмы называются полиплоидными, полиплоидные растения могут содержать от трех до ста гаплоидных наборов. В отличие от большинства мутаций полиплоидность чаще всего приносит пользу организму, полиплоидные особи крупнее обычных. Многие культурные сорта растений являются полиплоидными (рис. 3).

Рис. 3. Полиплоидные культурные растения

Человек может вызывать полиплоидность искусственно, воздействуя на растения колхицином (рис. 4).

Рис. 4. Колхицин

Колхицин разрушает нити веретена деления и приводит к образованию полиплоидных геномов.

Иногда при делении может происходить нерасхождение в мейозе не всех, а только некоторых хромосом, такие мутации называются анеуплоидными. К примеру, для человека характерна мутация трисомия 21: в этом случае не расходится двадцать первая пара хромосом, в результате ребенок получает не две двадцать первые хромосомы, а три. Это приводит к развитию синдрома Дауна (рис. 5), в результате чего ребенок получается умственно и физически неполноценным и стерильным.

Рис. 5. Синдром Дауна

Разновидностью геномных мутаций является также разделение одной хромосомы на две и слияние двух хромосом в одну.

Наследственные заболевания

В диплоидном организме большинство новых мутаций фенотипически не проявляется, поскольку они рецессивны. Это очень важно для существования вида, так как в большинстве своём вновь возникающие мутации оказываются вредными. Однако их рецессивный характер позволяет им длительное время сохраняться у особей вида в гетерозиготном состоянии без вреда для организма и проявиться в будущем при переходе в гомозиготное состояние.

Наследственные заболевания:

  • сцепленные с полом  (гены в половых хромосомах — дальтонизм, гемофилия);

    Синдром Клайнфельтера — патология, которая характеризуется наличием у мальчиков лишней X хромосомы (минимум одной), в результате чего нарушается их половое созревание. Заболевание в 1942 г. впервые было описано Клайнфельтером. У некоторых мальчиков может быть 3, 4 или 5 Х-хромосом с одной Y-хромосомой. При увеличении числа Х-хромосом также возрастает тяжесть пороков развития и умственной отсталости. Например, вариант набора хромосом 43 ХХХХV имеет столько характерных особенностей, что диагностировать его возможно в детском возрасте (рис. 5).

    • Рис. 5. Синдром Клайнфельтера

    • аутосомно-доминантные (в аутосомах, Аа и АА): чаще проявляются → больше подвергаются естественному отбору;
    • аутосомно-рецессивные (в аутосомах, только аа): реже проявляются → меньше подвергаются естественному отбору → дольше сохраняются в популяциях; чаще проявляются при близкородственных скрещиваниях (изолированные популяции, этнические и религиозные группы, правящие династии и т. п.).

    Многие аутосомно-рецессивные заболевания связаны с нарушение обмена веществ.

    Например, фенилкетонурия — 1 на 1000 случаев. Отсутствует фермент, превращающий аминокислоту фенилаланин в тирозин → накопление фенилаланина → поражение нервной системы → слабоумие (рис. 6).

    Рис. 6. Больной фенилкетонурией

    Лейциноз — тяжелое наследственное заболевание, которое связанно с нарушением аминокислотного обмена, имеет аутосомно-рецессивный тип наследования. Заболевание более известно как болезнь кленового сиропа. Заболевание получило такое название из-за специфического запаха мочи, который имеет схожесть с запахом сиропа из клёна. При данной патологии организм ребёнка неспособен усваивать аминокислоты: лейцин, изолейцин, валин. Специфический запах моча приобретает из-за наличия вещества, образующегося из лейцина. 

    Вместе с тем известен ряд случаев, когда изменение лишь одного основания в определённом гене оказывает заметное влияние на фенотип (генная мутация).

    Одним из примеров генной мутации служит серповидноклеточная анемия. Рецессивный аллель, вызывающий в гомозиготном состоянии это наследственное заболевание, выражается в замене всего одного аминокислотного остатка в β-цепи молекулы гемоглобина (глутаминовая кислота → валин). Это приводит к тому, что в крови эритроциты с таким гемоглобином деформируются (из округлых становятся серповидными) и быстро разрушаются (рис. 7). При этом развивается острая анемия и наблюдается снижение количества кислорода, переносимого кровью. Анемия вызывает физическую слабость, нарушения деятельности сердца и почек и может привести к ранней смерти людей, гомозиготных по мутантному аллелю.

    Рис. 7. Нормальный эритроцит и эритроцит при серповидноклеточной анемии

    Цитоплазматическая изменчивость

    Цитоплазматические мутации — связанные с мутациями, генов находящихся в митохондриальной ДНК и ДНК пластид.

    При половом размножении цитоплазматические мутациинаследуются по материнской линии, т. к. зигота при оплодотворении всю цитоплазму получает от яйцеклетки. 

    У высших растений пестролистные мутанты в ряде случаев являются примером возникновения пластидных мутаций.  Например: пестролистность ночной красавицы (рис. 8) и львиного зева (рис. 9) связана с мутациями в хлоропластах.

        

    Рис. 8. Пестролистность у ночной красавицы           Рис. 9. Пестролистность у львиного зева

    Спонтанные цитоплазматические мутации выявляются реже, чем мутации хромосомных генов. Это можно объяснить рядом причин. Очевидно, одна из причин лежит во множественности цитоплазматических структур и органоидов. Всякая цитоплазматическая мутация, возникшая в одном из многих идентичных органоидов, не может проявиться до тех пор, пока она не размножится в цитоплазме клетки.

    Цитоплазматическая мутация может проявиться в двух случаях: если данный органоид в клетке является единичным или представлен малым и постоянным числом, либо если мутаген имеет специфическое действие на органоиды клетки, вызывая массовое изменение их.

    Для изучения цитоплазматических мутаций очень удобным объектом оказалась хламидомонада. Стрептомицин вызывает у неё большое количество мутаций нехромосомных генов. При обработке раствором стрептомицина штаммов, чувствительных к этому антибиотику, были выделены мутанты, устойчивые к стрептомицину. 

  • Закон гомологических рядов наследственной изменчивости Н.И. Вавилова

    «Виды и роды, генетически близкие, характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм у других видов и родов. Чем ближе генетически расположены