Физические свойства горных пород полезных ископаемых

Физические свойства горных пород полезных ископаемых thumbnail

Издание 2

Издание:Недра, Москва, 1984 г., 455 стр., УДК: 552.08:53(03)

Физические свойства горных пород и полезных ископаемых (петрофизика). Справочник геофизика

Рассмотрены методика и техника петрофизических исследований, плотностные, упругие, магнитные, электрические и другие свойства химических элементов, минералов, горных пород, коллекторов нефти и газа, руд металлов, углей. Проанализированы связи физических свойств пород с составом и условиями образования их, показана возможность использования петрофизических характеристик при изучении тектоники регионов, геологическом картировании, поисках и разведке полезных ископаемых. Настоящий справочник открывает 2-е издание серии справочников» объединенных общим названием «Справочник геофизика». Издательство «Недра» и авторский коллектив надеются, что справочники будут служить настольным пособием для спе-циалистов-геофизиков, геологов, занимающихся интерпретацией геофизических данных, научных работников и конструкторов, работающих по развитию теории, методики разведочной геофизики, созданию геофизических приборов, специалистов в области наук о Земле, которым потребуются справки по разведочной геофизике. В 1960—1969 гг. издательством «Недра» была выпущена серия справочников в шести томах, отражающая состояние геофизических методов разведки на период 60-х годов. Быстрый темп развития науки и техники, конструирование более точной аппаратуры, внедрение новых методик полевых работ и интерпретации данных, применение электронно-вычислительных машин и др. обусловили необходимость издания (начиная с 1976 г.) новой серии справочников.Огромная роль в подготовке к изданию «Справочника геофизика» принадлежит В. В. Федынскому. В предисловии к первому тому «Справочника геофизика» [98J В. В. Федынский так определил значение этого издания: «Справочник геофизика» содержит необходимые справочные сведения по теории и практике применения разведочной геофизики для решения геологических задач, что позволит в ряде случаев избежать обращения к первоисточникам, а в других случаях ориентировать читателей в огромном потоке текущей научной литературы, отсылая их к наиболее важным источникам. Справочник геофизика призван вооружить специалиста в области разведочной геофизики сведениями о состоянии этой отрасли науки и техники и содействовать практическому использованию ее достижений.Иными словами……«Справочник геофизика» является фундаментальным источником информации на современном уровне, полезным и необходимым пособием для практического использования при проведении геологоразведочных работ и научных исследований по изучению строения земной коры».В «Справочнике геофизика» освещены различные области применения разведочной геофизики: региональное изучение глубинного строения земной коры, поиски и разведка нефтяных и газовых месторождений, изучение рудных полей, поиски и разведка рудных тел, поиски и разведка нерудных полезных ископаемых, изучение угольных месторождений и шахтных полей, инженерно-геологические и гидрогеологические исследования. Соответственно с этим настоящий том «Справочника геофизика» посвящен физической характеристике горных пород применительно к решению указанных задач разведочной геофизики.

ТематикаПетрофизика, Геофизика

Скачать

Все права на материалы принадлежат исключительно их авторам или законным правообладателям. Все материалы предоставляются исключительно для ознакомления. Подробнее об авторских правах читайте здесь!

Внимание! Если Вы хотите поделиться с кем-то материалом c этой страницы, используйте вот эту ссылку:
https://www.geokniga.org/books/758
Прямые ссылки на файлы работать не будут!

Источник

Booksee.org

Главная →

Дортман Н.Б.

Скачать книгу бесплатно (djvu, 10.71 Mb)   |  Читать «Физические свойства горных пород и полезных ископаемых (петрофизика). Справочник геофизика. »

Популярные книги за неделю:

#1

Г.С.Гендин. Высококачественные ламповые усилители звуковой частоты (МРБ-1235, 2000, djvu)

4.47 Mb

#2

Олег Анатольевич Платонов. Загадка Сионских протоколов (rtf) (“Терновый венец России” #6)

2.07 Mb

#3

И.Ю.Темпер, В.Е.Ошеров. Справочник радиолюбителя (1949, djvu)

4.95 Mb

#4

Физические свойства горных пород полезных ископаемых

Твоё свободное время (занимательные задачи, опыты, игры)

Болховитинов В.Н., Колтова Б.И., Лаговский И.К.

Категория: Педагогика в помощь учителю

33.80 Mb

#5

Физические свойства горных пород полезных ископаемых

Биохимия

Северин Е.С

Категория: Медицина, Химия, Биохимия

26.09 Mb

#6

Физические свойства горных пород полезных ископаемых

Чаромутие, или священный язык магов, волхвов и жрецов

Лукашевич Платон Акимович

Категория: society, religion, other, raritet

12.16 Mb

#7

Физические свойства горных пород полезных ископаемых

Атлас анатомии человека

Фрэнк Неттер

Категория: info, encyc, science, human, people, health

373.85 Mb

#8

Остромирово Евангелие

ред. В. Ганка

Категория: ЭЗОТЕРИКА, НАУКА и УЧЕБА

3.88 Mb

#9

Физические свойства горных пород полезных ископаемых

Блюда узбекской кухни

К. М. Махмудов, Ш. Г. Салихов

Категория: КУЛИНАРИЯ

16.55 Mb

#10

Физические свойства горных пород полезных ископаемых

Английский язык. Основы компьютерной грамотности

Радовель В.А.

Категория: НАУКА и УЧЕБА, РАЗНОЕ

2.39 Mb

Только что пользователи скачали эти книги:

#1

Сервис на железнодорожном транспорте

Иловайский Н.Д., и др.

Категория: Менеджмент управление логистика

515 Kb

#2

Физические свойства горных пород полезных ископаемых

Детали машин

Куклин Н.Г., Куклина Г.С.

Категория: science, technical, civil, engineer, civil, tech, civil

3.92 Mb

#3

Физические свойства горных пород полезных ископаемых

План счетов бухгалтерского учета: комментарий к последним изменениям

Под редакцией Г. Ю. Касьянова

Категория: money

1.73 Mb

#4

Физические свойства горных пород полезных ископаемых

Шаржи и карикатуры

Без автора

Категория: color, color, paint, society, art

1.89 Mb

#5

Физические свойства горных пород полезных ископаемых

Азбука вязания. Вязание крючком

Е. Карпова, С. Мещерякова

Категория: ДОМ и СЕМЬЯ, РАЗНОЕ, ХОББИ и РАЗВЛЕЧЕНИЯ, ВЯЗАНИЕ И ШИТЬЕ

17.92 Mb

#6

Физические свойства горных пород полезных ископаемых

Технологии пищевых производств

Ред. Нечаев А.П.

Категория: НАУКА и УЧЕБА

20.01 Mb

Читайте также:  Чем полезен и вреден тыквенный сок

#7

Физические свойства горных пород полезных ископаемых

Метафизика Петербурга. Петербургские чтения по теории, истории и философии культуры. Выпуск 1

Категория: Философия культуры

811 Kb

#8

Физические свойства горных пород полезных ископаемых

Метафилософия или философская рефлексия в пространстве традиций и новаций: Международные чтения по теории, истории и философии культуры. Выпуск 4

Категория: Философия культуры

2.21 Mb

#9

Физические свойства горных пород полезных ископаемых

Христианство и ислам в контексте современной культуры: Межрелигиозный диалог в России и на Ближнем Востоке: Коллективная монография

Категория: Культура. Культурология

4.70 Mb

#10

Физические свойства горных пород полезных ископаемых

Национальная культура и модернизация общества: Учебное пособие

Гавров С.Н.

Категория: Культура. Культурология

465 Kb

Источник

Естественные каменные материалы.

Классификация горных пород по происхождению (генетическая). Привести примеры горных пород из разных классификационных групп. Области применения.

Естеств. кам. мат-лы

– получают из горных пород путем их механической обработки (раскалыванием, пилением, дроблением, обтеской, шлифовкой, полировкой)

– или исп. в естественном виде (т.е. как они находятся в природе)(песок, гравий)

Горные породы – прир. агрегаты минералов более или менее постоянного состава, образующие самост. геолог. тела, слагающие зем. кору.

Классификация горных пород:

1.Изверженные (первичные):

– глубинные (интрузивные): гранит, сиенит, диорит

– излившиеся (эффузивные): диабад, базальт, вулкан. туф.

2.Осадочные (вторичные):

– механические: гравий, песок

– органогеннные: известняк, ракушечник, мел, диатомит

– химические: гипс, известняк

3.Метаморфические (видоизмененные):

– измененные изверженные породы: гнейс и т.д.

– измененные осадочные породы: мрамор, кварц и т.д.

Изверженные горные породы – образовались непосредственно из магмы – расплавленной массы преимущественно силикатного состава, в результате ее охлаждения и застывания. При внедрении магмы в земную кору и остывании в ее недрах на значительной глубине образуются глубинные(интрузивные), а при выходе и застывании магмы на поверхности Земли – излившиеся (эффузивные) изверженные горные породы. Магма может иметь основной состав (базальтовые породы), кислый состав (граниты), или щелочно-карбонатный или сульфидный составы.

В соответствии с условиями образования изверженные породы не могут содержать окаменелостей.

Осадочные породы – продукты разрушения под воздействием знакопеременных температур, ветра и воды изверженных горных пород, отложившиеся в горных бассейнах или на суше. Некоторые осадочные породы (органогенные) образуются в результате жизнедеятельности различных организмов.

Метаморфические породы образуются в результате длительного процесса изменения структуры некоторых изверженных или осадочных пород под влиянием больших давлений и высоких температур в толще земной коры.

Породообразующие минералы, их группы и свойства. Мономинеральные и полиминеральные горные породы, привести примеры.

5 групп породообразующих минералов:

– Кварц (кремнезем SiO2) – находится как в свободном виде, так и в виде силикатов, кварц – свободный природный кристаллический кремнезем)

– Алюмосиликат (глинозем (Al2O3) в природе встречается в виде корунда, диаспора (моногидрата, глинозема (Al2O3*H2O)), слюдо-водных алюмосиликатов, каолинита (Al2O3*2SiO3*2H2O)

– Железисто-магнезиальные силикаты (пироксены, амфитолы, и др) состоит из тонких и прочных волокон(горный лен)

– Карбонаты (кальцит (известкивый шпат CaCO3), магнезит MgCO3, доломит CaCO3,MgCO3)

– Сульфаты (гипс CaSO4*2H2O и ангидрит CaSO4) – при соединении с водой превращается в гипс

Св-ва:

Кварц – непрозрачны, матового или молочного цвета, нет спайности, раковистый излом, очень прочный, высокое сопротивление стиранию, высокая температура плавления, плотность 2,65 гсм3

Корунд является одним из наиболее твердых минералов (твердость 9 по шкале Маоса).

Диаспор содержит 85% оксида алюминия.

Полевые шпаты имеют белый, розовый, серый, желтый цвета. Плотность 2,55-2,76 см3, твердость 6 по шкале Мооса, прочность.

Слюдо-водные алюмосиликаты слож. и разнообразного состава: калиевая(мусковит – светлая, прозрачная, тугоплавкая, химически стойкая), железисто-магнезиальная.

Породы, состоящие из 1 минерала, называются мономинеральными (гипс), а из нескольких минералов – полиминеральными.

Физические и механические свойства горных пород, привести примеры с единицами.

Различают физическиеи механические свойства горных пород. Их выражают и оценивают с помощью определенных показателей (характеристик).

Физические свойства горных пород

Физические свойства характеризуют физическое состояние горных пород, т.е. качественную определенность, проявляющуюся в их плотности, влажности, пористости, трещиноватости и выветрелости в условиях естественного залегания. Данные об этих свойствах позволяют качественно оценивать прочность и устойчивость горных пород.

В качестве основного признака классификации физических свойств пород наиболее целесообразно принять внешние поля или воздействия, во взаимодействии с которыми проявляются те или иные свойства. На основе этого признака можно выделить следующие классы физических свойств горных пород: плотностные, механические, горнотехнологические, тепловые, электромагнитные, радиационные.

Физические свойства горных пород имеют большое практическое значение (радиоактивность, люминесценция, магнитностью, твёрдость, оптические свойства и др.) и очень важны для их диагностики.

Они зависят от химического состава и типа кристаллической структуры.

Например, радиоактивные свойства минералов зависят от химического состава – наличие радиоактивных элементов, спайность минералов зависит от особенностей их кристаллической структуры, плотность – от химического состава и от типа кристаллической структуры.

Физические свойства могут представлять скалярную величину (независимы от направления), например плотность, или быть векторными (зависящими от направления), например твёрдость, спайность, оптические свойства.

Плотность. Плотности минералов (в г/см3) колеблются от величин, примерно равных единицы, до 23.0. Подавляющая масса минералов имеет плотность от 2.5 до 3.5, что обуславливает плотность земной коры, равную примерно 2.7 – 2.8.

Минералы по плотности условно можно разделить на три группы: лёгкие (плотность до 3.0), средние (плотность от 3.0 до 4) и тяжёлые (плотность более 4).

Читайте также:  Чем полезна брокколи и цветная капуста фото

Дата добавления: 2016-11-12; просмотров: 4419 | Нарушение авторских прав | Изречения для студентов

Читайте также:

Рекомендуемый контект:

Поиск на сайте:

© 2015-2021 lektsii.org – Контакты – Последнее добавление

Источник

Физические свойства горных пород являются отражением совокупности геологических процессов их образования – петрогенеза. Напомним, что для наиболее распространенных осадочных пород они включают стадии осадконакопления, литофикации (диагенеза) и последующих их изменений в катагенезе, метаморфизме или выветривании.

Основными показателями физических свойств горных пород являются плотность частиц грунта и плотность грунта, гранулометрический состав, пористость и влажность, пластичность и консистенция, липкость, набухание и усадка, размокаемость, морозоустойчивость.

Плотность частиц грунта и плотность грунта. Плотностью частиц грунта ρs называется отношение массы частиц грунта к их объему. Плотность частиц грунта используется для определения таких показателей как пористость, плотность скелета грунта, коэффициент водонасыщения и др. Она является косвенным расчетным показателем.

Плотность частиц грунта определяют обычно при помощи пикнометра и аналитических весов. Ее значение можно взять из справочных таблиц. Средняя величина плотности частиц грунта составляет:

– для песчаных грунтов – 2,65 г/ см3

– для суглинистых – 2,7 г/ см3

– для глинистых – 2,75 г/см3

Плотность грунта ρ – это масса единицы объема грунта при естественной его пористости и влажности. Измеряется она в г/см3. Плотность характеризует относительную плотность породы в естественных условиях залегания и является величиной переменной. При данной пористости она наибольшая, когда поры полностью заполнены водой, наименьшая – в сухой породе. Поскольку большинство грунтов пористые, их плотность всегда меньше плотности частиц грунта. Плотность скальных пород из-за их малой пористости близка по значению к плотности частиц. У грунтов без жестких связей плотность составляет от 1,3 до 2,4 г/см3.

Плотность является прямым расчетным показателем и используется для определения горного давления, давления грунтов на подпорные стенки, расчета устойчивости откосов выемок, котлованов и карьеров, для вычисления плотности скелета грунта (плотности сухого грунта) и пористости. Определяют плотность путем взвешивания образцов грунта, отбираемых при помощи режущих колец, и последующего парафинирования. В полевых условиях ее можно определять геофизическими методами.

Для решения различных инженерно-геологических задач определяют плотность грунта ρ в естественных условиях, плотность скелета грунта ρd и плотность грунта под водой ρвзв. Плотность скелета грунта меньше плотности грунта, находящегося в естественных условиях, на величину массы содержащейся в нем влаги, что легко определяется взвешиванием после высушивания. Для глинистых грунтов плотность скелета грунта при известных значениях плотности влажного грунта и естественной влажности W определяют по формуле:

,

где ρ – плотность грунта, г/см3; W – природная влажность грунта, д.е.

Плотность грунта под водой ρвзв уменьшается из-за взвешивающего влияния воды, действующей на породу в соответствии с законом Архимеда. Ее определяют по формуле:

ρвзв= ,

где ρs – плотность частиц грунта, г/см3; ρd – плотность скелета грунта, г/см3.

Значение ρвзв используют при расчетах устойчивости оснований и откосов, находящихся ниже уровня грунтовых вод.

Гранулометрический состав является важнейшим фактором, определяющим многие инженерно-геологические свойства пород без жестких связей (пористость, пластичность, сопротивление сдвигу, сжимаемость, усадка, набухание, высота капиллярного поднятия, фильтрационные свойства). Знание гранулометрического состава необходимо для ориентировочного определения возможности их вымывания в откосах выемок и насыпей, а также для оценки грунтов как материалов для приготовления бетона, отсыпки насыпей, балластного слоя, фильтрационных обсыпок и решения других практических задач.

Гранулометрический состав представляет собой процентное содержание в породе частиц определенного размера. Его определяют путем специальных лабораторных исследований (ситовой анализ, двойное отмучивание, ареометрический и пипеточный анализ и др.). Результаты гранулометрических анализов фиксируют в виде циклограмм, диаграмм-треугольников и кривых гранулометрического анализа. Наибольшее распространение получили кривые гранулометрического анализа. Их составляют обычно в полулогарифмическом масштабе.

На использовании данных гранулометрического состава основана классификация крупнообломочных и песчаных пород для строительных целей, по которой выделяются грунты крупнообломочные (щебнистые, галечные, дресвяные, гравийные) и песчаные (пески гравелистые, крупные, средней крупности, мелкие, пылеватые).

Пористость и влажность. Эти важнейшие характеристики инженерно-геологических свойств горных пород рассмотрены в разделе «Основы гидрогеологии». Пористость грунтов является их важнейшей строительной характеристикой, так как она определяет плотность их сложения. Показатели пористости используют для вычисления коэффициента пористости, плотности скелета грунта, коэффициента фильтрации, водоотдачи и других расчетных показателей грунтов.

Наряду с показателем естественной влажности, характеризующим массовое или объемное содержание влаги в грунте (%), в инженерной геологии используют показатель Sr, характеризующий степень заполнения пор грунта водой. Он определяется отношением объема воды в порах к объему всех пор и называется коэффициентом водонасыщения. Теоретически его величина может изменяться от 0 (для абсолютно сухих грунтов) до 1 (для грунтов с полностью заполненными водой порами). В зоне насыщения коэффициент водонасыщения грунтов составляет 0,8—1,0, в зоне аэрации он значительно меньше. Коэффициент водонасыщения грунтов (особенно песчаных) учитывается при определении нормативных давлений. Величину показателя коэффициента водонасыщения Sr определяют по специальным номограммам (В.В.Дмитриев, Л.А.Ярг «Методы и качество лабораторного изучения грунтов») и формуле (ГОСТ 25100-95 Грунты. Классификация):

Sr= ,

где w – природная влажность грунта, д.е.;

e – коэффициент пористости;

ρs – плотность частиц грунта, г/см3;

ρw – плотность воды, принимаемая равной 1 г/см3.

Пластичность грунтов и их консистенция. Эти показатели определяются для глинистых грунтов и проявляются при их увлажнении. Пластичностью называют способность пород деформироваться без разрыва под влиянием внешнего воздействия и сохранять принятую форму после прекращения этого воздействия. Пластичность глинистых и некоторых других пород (лесса, глинистых мергелей и мела) зависит от их влажности, гранулометрического и минерального состава, формы минеральных частиц, химического состава поровых вод, состава обменных катионов и других факторов.

Читайте также:  Полезна ли газированная минеральная вода для организма

Количественной характеристикой пластичности пород в инженерно-геологической практике являются пределы пластичности: нижний предел пластичности (или граница раскатывания) и верхний предел пластичности (или граница текучести). Под нижним пределом пластичности понимают влажность породы (%), при которой она переходит из твердого состояния в пластичное. Обычно этот предел устанавливают как влажность породы, при которой ее можно раскатать в жгутики толщиной 3 мм. Верхний предел пластичности – это влажность породы WL (%), при которой она переходит из пластичного состояния в текучее. Разность между верхним и нижним пределами пластичности (IP = WLWP), соответствующая интервалу влажности, в котором порода находится в пластичном состоянии, называется числом пластичности. По значению числа пластичности глинистые грунты подразделяются на супеси (при IP<7), суглинки (7< IP <17) и глины (IP >17).

Под консистенцией понимается степень подвижности частиц, слагающих глинистую породу, под влиянием внешнего механического воздействия при различной влажности. Количественно консистенция характеризуется показателем текучести IL, который определяют по формуле:

По показателю консистенции классифицируют глинистые грунты:

– супеси относят к твердой консистенции при IL <0, к пластичной – при 0£ IL £1, к текучей – при IL >1;

– суглинки и глины относят к твердой консистенции при IL <1, к полутвердой – при 0£ IL £0,25, к тугопластичной – при 0,25£ IL £0,5, к мягкопластичной – при 0,5£ IL £0,75, к текучепластичной – при 0,75£ IL £1, к текучей – при IL >1.

В зависимости от консистенции грунтов устанавливают их несущую способность при проектировании зданий и сооружений.

Липкость (прилипаемость) характеризует способность грунтов прилипать к рабочим органам землеройных и других механизмов. Проявляется липкость при влажности выше нижнего предела пластичности. Количественной ее характеристикой является максимальное усилие (в Па), необходимое для отрыва металлической пластинки от грунта при различной его влажности. Липкость определяют в лабораторных условиях. Проявление липкости обусловлено действием тех же факторов, что и пластичности. Максимальную липкость имеют монтмориллонитовые глины. Определение липкости имеет существенное значение при строительстве дорог, аэродромов и пр. Ее также необходимо учитывать при проектировании и работе землеройных механизмов.

Набухание и усадка. Глинистые породы при увлажнении увеличиваются в объеме – набухают, а при уменьшении влажности их объем уменьшается, происходит усадка. Причиной набухания является увеличение толщины пленок физически связанной воды и объема заполняемых водой пор при неизменном объеме минеральных частиц. Так как утолщающиеся вокруг частиц глин пленки снижают силы сцепления между ними, то прочность набухших грунтов значительно уменьшается.

Усадка вызывается процессами, обратными набуханию. При уменьшении влажности тонкие пленки не препятствуют проявлению сил сцепления между минеральными частичками грунта, происходит их сближение и сокращение объема грунта.

Набухание и усадка грунтов могут приводить к деформациям оснований инженерных сооружений, а также откосов выемок, котлованов, каналов и пр. Поэтому при проектировании инженерных сооружений следует изучать и учитывать способность грунтов к набуханию и усадке. Количественно величина набухания выражается давлением набухания, влажностью набухания или увеличением объема образца породы. Усадка характеризуется уменьшением объема либо длины усыхающего образца (объемная и линейная усадка) или влажностью на пределе усадки. Под влажностью на пределе усадки понимается та влажность, по достижении которой при дальнейшем высыхании образца (т.е. уменьшении его влажности) объем образца остается неизменным.

Под размокаемостью понимается способность глинистых грунтов при впитывании воды терять связность и превращаться в рыхлую бесформенную массу, полностью лишенную несущей способности. Основная причина размокания – образование около минеральных частичек грунта предельно толстых пленок, устраняющих внутренние связи. Интенсивность размокания глинистых пород в воде зависит от их состава, начальной влажности, наличия цементационных связей и их водостойкости, степени выветрелости, искусственных факторов. Знать степень размокаемости важно при оценке устойчивости берегов водохранилищ, откосов каналов, стенок котлованов и других земляных сооружений.

Показателями размокаемости являются скорость размокания, т. е. время, в течение которого образец грунта, помещенный в воду, распадается и характер распада – это крупные или мелкие комочки, пыль и т. п. Размокаемость определяют на образцах с ненарушенной и нарушенной структурой (в зависимости от того, в каком состоянии грунт будет взаимодействовать с водой).

Морозоустойчивость – это способность влажной горной породы противостоять разрушающему действию замерзающей в ее порах и трещинах воды. Напряжение, возникающее при этом в породе, может достигать 1,96-10 Па. Морозоустойчивость зависит от прочности пород, величины и характера пористости, количества и расположения трещин, степени насыщения пор водой и скорости промерзания. Морозоустойчивость пород определяют путем попеременного замораживания образцов в холодильной камере при температуре от –15 до –40°С, оттаивания их в воде, имеющей комнатную температуру, и определения временного сопротивления сжатию до и после замораживания. Число циклов испытаний от 25 до 200 и больше, в зависимости от типа и важности сооружений, для которых намечается использовать породу. Степень морозоустойчивости оценивают числом циклов испытаний, которые выдержала горная порода без заметных признаков разрушения и потери прочности от замораживания и размораживания.

Источник