Добыча полезных ископаемых дна морей океанов
Помимо поверхности континентов, человек в течение всей своей истории использует полезные ископаемые океана и моря.
До недавних времен главной областью эксплуатации было рыболовство, но в последние десятилетия важную роль в экономике некоторых приморских государств играет добыча нефти с морского дна в районе материковых окраин.
Человек использует соли, растворенные в морской воде. В настоящее время о запасах моря часто говорят, как о надежде человечества. Моря и океаны, покрывающие более двух третей поверхности земного шара, призваны поддержать энергетический, сырьевой и пищевой баланс увеличивающегося населения Земли.
Естественно, встает вопрос, реально ли это?
Что можно добыть с Мирового океана
Казалось бы само собой разумеющимся, что соль, которую употребляет человек, происходит из моря, но это не так.
Лишь третья часть поваренной соли получается путем испарения морской воды, остальная добывается на континентах или путем испарения соляного раствора — минерализованных вод, сопровождающих месторождения соли.
Итак, морская вода является химическим сырьем, но самое ценное, что из нее получают, не соль, а бром, используемый в первую очередь в фотографической промышленности, и магний. Из морской воды добывается более двух третей мирового потребления этих элементов.
Морская вода содержит и ряд других соединений, находящихся в растворенном состоянии. Время от времени в СМИ можно прочесть, сколько в ней находится урана или золота. Эти цифры действительно поражают.
Однако нас ограничивает в действиях тот факт, что мы пока не располагаем достаточным количеством энергии, чтобы наладить процесс их извлечения. Но ряд процессов проводит за человека сама природа.
Добыча тяжелых металлов с морского дна
Так, например, медь, марганец, кобальт, никель нет необходимости добывать из морской воды, поскольку эти металлы выпадают и кристаллизуются на дне океанских впадин в виде марганцовых конкреций. Это – образования величиной с орех, кулак или футбольный мяч, во множестве рассыпанные по дну Тихого и Атлантического океанов и состоящие из слоев окислов железа и марганца, кристаллическая структура которых легко связывает более тяжелые металлы, как никель, кобальт и медь.
Общее содержание полезных ископаемых океана в виде металлов в марганцовых конкрециях достигает 2,5%. Поэтому исследовательские корабли составляют карты морского дна, фотографируют его с помощью подводных камер, а ученые анализируют содержание металла в этих шаровидных образованиях.
Выявленное содержание металлов пока невелико, а расходы по добыче сырья со дна велики. Но надежды на источники сырья имеются, хотя о юридической стороне вопроса добычи со дна моря люди договариваются с трудом.
С большим успехом проводится добыча так называемых тяжелых минералов в прибрежных областях.
Например, ученые нашли подводную гору в 300 милях от побережья Канарских островов. Гора представляет редкоземельный металл теллур.
Стоимость этого металла составляет порядка 300 долларов за кг, что будет достаточно прибыльно начать добычу с морского дна.
Вода сортирует минералы
Средневековые горняки, да и позже золотоискатели получали золото путем промывки речных наносов. Вода уносила из старательских сит более легкие силикатные минералы, а на дне оставались более тяжелые минералы. Когда посчастливилось, то и кусочки золота.
Морской прибой и сильные морские течения в ряде мест делали эту работу за человека.
Более тяжелые минералы, например, касситерит (оловянная руда), циркон (циркониевая руда), рутил (окисел титана), моназит (сложный фосфат с содержанием редкоземельных элементов) и даже алмаз высвобождаются из горных пород в процессе выветривания, а поскольку они более стойки, чем многие другие минералы (например, полевой шпат), вода уносит их в море. Там они сортируются как в старательском сите: более легкие, обычно силикатные и кварцевые материалы уносятся, а на пляже или на мелком морском дне остаются тяжелые, полезные фракции. Во многих местах в мире добываются минералы в переходных зонах от океана к материкам.
Однако полезные ископаемые океана и моря пока сложно извлечь или достать с морского дна с учетом получения прибыли. Но технологии улучшаются и, возможно, основные источники сырья будут находиться в море.
Как все начиналось
О богатствах океанического дна известно уже более полутора веков. В романе Жюля Верна «20 000 лье под водой» капитан Немо упоминает «значительные залежи руд, цинка, железа, серебра, золота» и видит за ними будущее. В 1868 году российский корабль добыл самородок железной руды в Северном Ледовитом океане в ходе работ по углублению морского дна. Еще пять лет спустя месторождение железа было найдено в Атлантическом океане, еще через два года — в Тихом. Но настоящий прорыв в освоении глубоководных запасов полезных ископаемых начался лишь в 1960-е годы XX века, с выходом книги «Минеральные богатства океана» (Mineral Resources of the Sea) американского геолога Джона Меро (в 1969 году она была переведена на русский язык и издана в СССР в издательстве «Прогресс»). В 1970 Генеральная Ассамблея ООН признала океанические ресурсы общим достоянием человечества и декларировала их международное использование в мирных целях. В 1982-м была принята конвенция Организации Объединенных Наций по морскому праву (ЮНКЛОС), участниками которой стали 168 стран. В 1994 году все они вошли в состав Международного органа по морскому дну, регулирующего глубоководную разведку и добычу полезных ископаемых.
В последние десятилетия XX века интерес к глубоководной добыче несколько иссяк из-за доступности запасов полезных ископаемых на суше и падения цен на металлы: затраты на технологии и оборудование превышали потенциальную выгоду от освоений подводных месторождений. Современная ситуация выглядит иначе: ресурсы на суше истощаются, а материально-техническая база — совершенствуется. Именно поэтому правительства, корпорации и научно-исследовательские организации осваивают программы добычи полезных ископаемых.
Мировой океан как мировое достояние
Если представить себе Мировой океан со всеми его ресурсами в виде условного государства, то его ВВП составит порядка 3 трлн долларов США: так считают эксперты Росгеологии. Это сопоставимо с показателями Бразилии, Великобритании, Франции или Индонезии. К середине XXI века эта цифра может увеличиться более чем вдвое. В океане обнаружены россыпи традиционных и специфических твердых полезных ископаемых, запасы нефти, газа, газовые гидраты (их можно использовать как альтернативный источник природного газа). Кроме того, в морской воде содержится более 70 элементов таблицы Менделеева.
Уже к концу XX века стали широко известны нефтяные и газовые запасы всех четырех океанов, а также дна Каспийского моря (доступ к каспийской нефти имеют Россия, Иран, Азербайджан, Казахстан и Туркменистан). 30-35% мировой добычи углеводородов относится к шельфовым и глубоководным месторождениям. Мировой алмазный гигант De Beers Group использует специализированные корабли на атлантическом побережье Африки для перемещения техники по морскому дну в поисках алмазов. На подводные месторождения возлагается большая надежда после значительного спада в алмазной отрасли в 2019 году и сокращения добычи в разгар пандемии коронавируса.
Плавучая самоподъемная буровая установка (СПБУ) «Арктическая» компании «Лукойл». Фото: РИА Новости
Канадская геологоразведочная компания Nautilus Minerals разрабатывает месторождения драгоценных металлов в территориальных водах Папуа-Новой Гвинеи, а в Японии и Южной Корее запускаются государственные проекты по освоению собственных морских запасов. Не остается в стороне и Россия: в Указе Президента РФ №327 «Об утверждении Основ государственной политики Российской Федерации в области военно-морской деятельности на период до 2030 года» от 20 июля 2017 года говорится о растущем значении океанических вод «в связи с истощением природных ресурсов суши, воздействием хозяйственной и иной деятельности человека на окружающую среду, изменением климата, миграцией населения и другими процессами». Но наиболее лакомым кусочком для корпораций становятся воды открытого моря: они составляют более половины всего пространства Мирового океана и содержат больше полезных ископаемых, чем все континенты, вместе взятые.
Вплоть до 70-х годов прошлого века считалось, что в глубоководных впадинах жизни нет, потому что солнечные лучи не проникают так глубоко. Соответственно, фотосинтез водорослей там невозможен. А без водорослей, которые становятся первым звеном для множества пищевых цепочек, не смогут существовать и другие организмы. Но в 1977 году океанологи открыли гидротермальные источники на глубине около 2500 метров. В их водах обнаружили осьминогов, крабов и трубчатых червей, питающихся органическими соединениями. Согласно современному исследованию Шведской королевской академии наук, одно горнодобывающее судно оставляет за собой более 50 тысяч кубометров отходов в день. Часть этих отходов содержит ртуть и свинец, что, по мнению ученых, может привести к вымиранию целых видов подводных организмов.
Фото: pixabay.com
С одной стороны, освоение морских богатств сможет восстановить горнодобывающую отрасль после кризиса и сберечь минеральные ресурсы суши (обеспеченность запасами многих полезных ископаемых на континентах не превышает 50 лет). С другой, развитие глубоководной добычи неизбежно приведет к негативным последствиям для экосистемы Мирового океана. Что же делать и как регулировать эту проблему на государственном и международном уровне?
Проблемы и пути их решения
Основная проблема правового регулирования глубоководной добычи полезных ископаемых заключается в «плавающем» статусе Международного органа по морскому дну. В отличие от многих других организаций ООН, он подчиняется собственному генеральному секретарю: сейчас этот пост занимает британец Майкл Лодж. Собрания организации проходят ежегодно в Кингстоне, столице Ямайки. Целью их деятельности является не запрет глубоководной добычи, а уменьшение ущерба для окружающей среды от нее.
В 2019 году представители стран-участниц Международного органа по морскому дну впервые рассмотрели проект Горнодобывающего кодекса — документа, определяющего порядок добычи полезных ископаемых на дне океана. В то же время, к этому моменту порядка 30 корпораций уже оформили разрешения на освоение морского дна в Тихом, Атлантическом и Индийском океанах. По состоянию на 2020 год, кодекс еще не вступил в силу, а подводная добыча уже происходит в коммерческих масштабах и вызывает закономерные вопросы у экологических организаций. Согласно исследованиям Greenpeace, отходы от разработки полезных ископаемых в Мировом океане могут перемещаться на тысячи километров.
Подводные горы, богатые металлами и минералами, являются источником обитания рыб, кораллов, губок, дельфинов и морских черепах. В водах гидротермальных источников селятся моллюски, и промышленные работы могут поставить некоторые их виды на грань вымирания. По словам Майкла Лоджа, развитие добычи приведет к развитию мониторинга и необходимости разработки международных стандартов. Сейчас, на предварительном этапе, эксперты видят меньше опасности для окружающей среды в освоении морского дна, чем в ядерной и нефтяной промышленности. Ожидается, что в период с 2020 по 2030 год рынок глубоководной добычи будет расти на 37,1% в год.
Но пока ни коммерческие, ни общественные организации не могут объективно оценить последствия для окружающей среды от освоения морского дна. Часть ученых говорит о том, что не стоит спешить с бурной деятельностью, ссылаясь на недостаточную изученность флоры и фауны Мирового океана. По словам биолога Лизы Левин из Института океанографии Скриппса, миллионы видов живых организмов, обитающих в морской воде, до сих пор не описаны подробно. С ней соглашается и ее коллега Джефф Дрейзен из Гавайского университета в Маноа: ученый утверждает, что оценить все риски невозможно, пока морские глубины остаются самой неизученной экосистемой на планете.
Фото: unsplash.com
По последним данным, совещание Международного органа по морскому дну, посвященное внедрению Горнодобывающего кодекса и изначально запланированное на 2020 год, вряд ли будет проведено до начала 2021-го из-за закрытия границ большинства государств. В результате у ученых и экспертов по защите окружающей среды теперь есть чуть больше времени для исследований, сбора и анализа данных. Даже если документ удастся принять в следующем году, до старта полноценного и рационального освоения богатств Мирового океана должно пройти еще несколько лет: слишком поспешные меры могут привести к непредсказуемым последствиям.
Пока не до конца ясно, чем обернется для планеты глубоководная добыча полезных ископаемых: новыми возможностями или новой экологической катастрофой. Ответ на этот вопрос во многом зависит от согласованных действий корпораций, международных организаций и мирового научного сообщества.
Клаус Экер, ведущий специалист отдела конструирования насосов для горнодобывающей промышленности и морской добычи полезных ископаемых, завод KSB, Хомбург (ФРГ)
Технология добычи полезных ископаемых со дна океана открыла принципиально новую область использования погружных электронасосных агрегатов. Совершенствование этого вида насосного оборудования остается в течение 70-ти лет одним из важнейших направлений в программе развития фирмы KSB.
Наша фирма имеет большой опыт эксплуатации погружных насосов на нефтегазодобывающих платформах в открытом море (работающие на морской воде балластные насосы, насосы системы охлаждения компрессоров, пожарные насосы и т.д.). Однако применение погружных насосов KSB (с заполненным водой электродвигателем) для транспортировки марганцевых конкреций со дна Тихого океана стало серьезной проверкой их надежности при работе в экстремальных условиях. Следует заметить, что эти руды залегают вдали от берегов на глубине 5000–10000?м. О существовании океанических залежей марганцевых конкреций человечество знало уже с прошлого века, когда англо-голландская экспедиция на борту британского исследовательского судна «Челленджер» в 1873 г. подняла в неводе первые образцы руды на поверхность. Долгое время таинственные океанические минералы оставались предметом исследований и дискуссий ученых. Было установлено, что конкреции растут в течение миллионов лет (от 0.001 до 1 мм в тысячелетие), а структура их поперечного сечения имеет поразительное сходство с годовыми кольцами дерева. В составе марганцевых конкреций обнаружили также железо, медь, никель и другие металлы. Исследования, проведенные в течение Международного геофизического года (1957/58), показали, что эти рудные образования, имеющие картофелеобразную форму, покрывают обширные площади дна Тихого, Индийского и северной части Атлантического океанов. Высокое содержание в конкрециях марганца (до 30%) в то время не представляло особого интереса, так как мировая промышленность еще не испытывала недостатка в марганцевом сырье. Но другие, более ценные компоненты, такие как медь, никель, кобальт, молибден и титан, были приняты во внимание для будущего использования.
Сегодня большинство составляющих конкреций вызывает огромный интерес металлургов. Однако если подобные анализы конкреций ученые уже имели в своем распоряжении, то технические проблемы их добычи еще предстояло решить.
Сделать продукцию экономически выгодной возможно только при достижении высокой производительности добывающего предприятия (не менее нескольких тонн руды в час). Только в 60-х годах нашего столетия оказалось возможным сформулировать практические задачи освоения подводных месторождений.
Разработка минеральных ресурсов мирового океана стала одним из важнейших и, в то же время, очень спорным вопросом на Международных конференциях по Морскому Праву, которые проводились под эгидой ООН с 1958 по 1982 год. Основная проблема будущей морской добычи была связана не столько с возможностями современной техники, сколько с вопросами финансирования. Стоимость предварительных вложений в добывающее предприятие оценивается, по меньшей мере, в миллиард долларов. Такие затраты доступны только индустриально развитым странам, при условии объединения в них нескольких крупных компаний. Например, немецкий «Союз добычи минеральных ресурсов моря» (АМР) был представлен следующими фирмами: Deutsche Schachtbau und Tiefbohrgesellschaft, Metallgesellschaft AG, Preussag AG.
Первым практическим достижением в промышленной добыче марганцевых конкреций с глубины 5250 метров в центральном районе Тихого океана (около Гавайских островов) стала успешная работа экспериментального судна «Sedco 445». Эта работа началась в апреле 1978 года и выполнялась совместными целенаправленными усилиями компаний SEDKO (США), INCO (Канада), DOMCO (Япония) и AMR (Германия). Только согласованная работа всех заинтересованных сторон позволила нашей фирме добиться успеха в проведении промышленного эксперимента с применением насосного оборудования для разработки океанических рудных месторождений. Фирма KSB AG получила заказ на весь объем поставки оборудования для линии транспортирования марганцевых конкреций со дна океана (трубопровод с основными транспортными насосами, струйная промывка узлов коллектора, управление коллекторным устройством с помощью погружного электродвигателя). На корабле размещалась буровая вышка, через которую проходил транспортный трубопровод диаметром 200 мм, соединяющий корабль с месторождением конкреций. Под кораблем была предусмотрена конвейерная (многоступенчатая) система гидравлического транспортирования руды. Непосредственно под буровой вышкой был расположен жесткий вертикальный трубопровод. Последняя секция транспортного трубопровода представляла собой гибкий гофрированный шланг, соединенный с коллектором. Этот шланг являлся своеобразным компенсатором при буксовании коллектора по неровному дну океана. Размещенная на корабле буровая вышка была сконструирована таким образом, чтобы движение судна не изменяло ее вертикального положения. Подвешенный к монтажной башне трубопровод (его вес составлял около 1000 т) должен был при перемещении корабля оставаться в строго зафиксированной позиции, чтобы коллектор системы находился точно над зоной добычи полезных ископаемых. Устройство, собирающее марганцевые конкреции внутри корпуса коллектора, приводилось в движение погружным электродвигателем KSB типа 10А 153/4s. Далее в транспортной линии был установлен погружной насос KSB типа UQN 294/1+8А 53/2s, который имел на выходе специальные насадки для образования сильных напорных струй. Эти струи использовались для разрыхления грунта и отделения марганцевых конкреций от донного осадочного слоя. В то время как коллектор собирал на дне конкреции, донный осадок был вовлечен в интенсивное вихревое движение. Правильность монтажа участков транспортного трубопровода на большой глубине и работа коллектора гидросистемы наблюдались на корабле с помощью подводной телекамеры. На глубине ~900 м в жестком участке трубопровода были последовательно установлены друг над другом три насоса KSB типа ВРЕ 506/6а с погружными электродвигателями типа ALBLQ 80-406 (мощность двигателя 800 кВт и напряжение сети 4000 В). Номинальная подача каждого насоса была равной 500 м3/час, а суммарный напор трех насосов составлял 265 м. Здесь необходимо напомнить, что в принципе напор насоса преодолевает только потери трения на длине 5250 м. Электронасосы имели конструкцию, позволяющую транспортировать в жидкости 5% твердого вещества (марганцевых конкреций). Из-за ограничений, которые определяются возможностями морского судна, было невозможно превышать допустимые габаритные размеры насоса и электродвигателя. Поэтому общая длина перекачивающего насоса составляла 11.3 м. Это определило выбор 10-ступенчатого секционного насоса с радиальными рабочими колесами. Наибольший внешний диаметр электронасоса при этом был равен 550 мм. Специальная гидравлическая система определяла работу насоса. Пространство между электродвигателем и байпасным кожухом формировалось в течение всего времени работы насоса. При этом минимальная скорость потока всегда превышала скорость опускания конкреций (критическую скорость). Контроль за скоростью потока осуществляли регуляторы, расположенные между трубой и электродвигателем. В порядке предупреждения каких-либо заторов (пробок) в движении конкреций и засоров насоса при ожидаемых концентрациях твердых включений был точно определен минимальный свободный проход в проточной части насоса, равный 75 мм. В результате была разработана специальная конструкция, согласующая геометрию рабочих колес и направляющих аппаратов с корпусом насоса. Силовой питающий электрокабель погружного двигателя (в бронированном исполнении), который использовался в этом проекте, был применен впервые. Электрокабель полностью защищен от воздействия морской воды. Спиральные выводы кабеля из электродвигателя и байпасного кожуха были снабжены специально разработанными для этих условий уплотнениями, которые остаются герметичными при давлении до 100 бар. Изоляция (из поливинилхлорида и полиэтилена) была предварительно испытана в специальном автоклаве под большим избыточным давлением воды. Эти испытания показали, что давление не оказывает какого-либо значительного влияния на механические и электрические свойства изоляции. Тот же результат был получен при проверке свойств материала при воздействии высокого напряжения (до 10000?В). Промышленные испытания электронасосов показали полную надежность погружных двигателей как на глубине 5250 м ниже поверхности океана, так и в экспериментальном батискафе на глубине 10000 м. Межремонтный ресурс электронасосов был равен 6–8 тыс. часов непрерывной работы, а полный срок службы составляет от одного до двух лет.
Работа погружных насосов в гидравлической системе транспортировки марганцевых конкреций дала возможность оценить эффективность их применения для нужд металлургической промышленности. В третьем тысячелетии человечество не сможет долго обходиться без использования огромных сырьевых ресурсов океана. Проверенное на надежность насосное оборудование фирмы KSB создало условия для промышленного освоения рудных месторождений на дне мирового океана.