Что такое вихревые токи вредны они или полезны
Вихревые или еще так называемые цикличные токи могут нести в себе помимо вреда еще и пользу. С одной стороны, вихревые токи – это непосредственная причина потерь электроэнергии в проводнике либо же катушке. В то же самое время на этом эффекте построены современные индукционные печи, так что польза от таких токов есть. Давайте поговорим о пользе и вреде немного по подробней.
yandex.ru
Краткое определение
Для начала давайте дадим определение озвученному явлению. Вихревые токи – это такие токи, которые начинают протекать по причине воздействия переменного магнитного поля. При этом может изменяться не само поле, а положение проводника в этом поле, то есть если проводник начнет перемещаться в статичном поле, то в нем все равно образуются токи Фуко.
И траекторию протекания таких токов определить невозможно. Известно лишь то, что ток проходит в том месте, где сопротивление минимально.
Как открыли это явление
Изначально вихревые токи были зафиксированы в 1824 году ученым
Д.А. Араго во время проведения следующего опыта:
На одной оси были смонтированы медный диск и магнитная стрелка, диск располагался внизу, а стрелка несколько выше. Так вот, когда стрелку вращали, то медный диск также начинал вращаться, так как протекающие токи формировали магнитное поле, которое и вступало во взаимодействие с магнитной стрелкой.
Наблюдаемый эффект получил название – явление Араго.
yandex.ru
По истечении нескольких лет этот вопрос стал изучать Максвелл Фарадей, который как раз открыл закон электромагнитной индукции. Так вот, согласно открытому закону было сделано предположение, что магнитное поле оказывает непосредственное воздействие на атомарную решетку проводника.
И образующийся в результате данного воздействия электрический ток, всегда формирует магнитное поле во всем проводнике.
А подробно описал вихревые токи уже экспериментатор Фуко, именно поэтому второе название вихревых токов – токи Фуко. С историей немного познакомились, теперь давайте узнаем природу вихревых токов.
Природа вихревых токов
Замкнутые циклические токи могут образоваться в проводнике только в том варианте, когда магнитное поле, в котором находится проводник, имеет нестабильную структуру, то есть имеет вращение или изменяется со временем.
Из этого следует, что сила вихревых токов имеет прямую связь со скоростью изменения магнитного потока, проходящего через проводник.
По общепринятой теории электроны перемещаются в проводнике линейным образом из-за разности потенциалов, а это значит, что ток имеет прямое направление.
yandex.ru
Токи Фуко ведут себя совершенно по-другому и образуют вихревой замкнутый контур прямо в проводнике. При этом данные токи способны на взаимодействие с магнитным полем, которое их и создало.
Проводя исследование этих токов, ученый Ленц сделал вывод, что сгенерированное вихревыми токами магнитное поле не позволяет магнитному потоку, который и создал эти токи, измениться. При этом направленность силовых линий вихревого тока идентично вектору направления индукционного тока.
Вихревые токи и их вред
Давайте вспомним, как выглядит обычный трансформатор.
Так вот, если вы внимательно посмотрите на сердечник, то вы увидите, что он собран из отдельных пластин. А вам не кажется, что гораздо проще его было выполнить цельным?
Именно таким «дроблением» пытаются максимально снизить негативное воздействие токов Фуко. Ведь вихревые токи нагревают тело, в котором они протекают.
Как же они появляются в трансформаторе? Его работа и основана на принципах взаимодействия магнитных полей переменного характера, а как мы уже знаем переменное поле неизбежно порождает вихревые токи.
yandex.ru
Получается, что вихревой ток нагревает сердечник. А нагрев ведет к снижению КПД и сильный перегрев приведет к оплавлению изоляции, а значит разрушению трансформатора.
Как снижают потери
Данные потери могут быть описаны следующей формулой:
Как вы знаете, верно следующее утверждение: проводник с маленьким сечением обладает большим сопротивлением, а чем больше сопротивление проводника, тем меньший ток проходит через него.
Именно поэтому сердечник выполнен из цельного куска стали, а не собран из тонких пластин, которые изолированы друг от друга окалиной или слоем лака. Такой способ сборки сердечника максимально уменьшает потери в сердечнике, то есть сводят вихревые токи до минимума.
Полезное использование вихревых токов
Данные токи не только несут негатив. Их давно научились использовать с пользой. Так, например, свойства вихревых токов используются в индукционных счетчиках. Данные токи замедляют вращение алюминиевого диска, который вращается под действием магнитного поля.
Так же создание индукционных сталеплавильных печей оказало несоизмеримый вклад в развитие всей современной индустрии производства стали.
yandex.ru
Такие печи работают следующим образом: металл, который будут подвергать плавлению, помещают внутрь катушки, через которую начинают пропускать ток повышенной частоты. При этом магнитное поле формирует большие токи внутри металла, и последующий нагрев расплавляет металл.
В многоквартирных домах вы сможете увидеть индукционные плитки, принцип работы которых также основан на использовании эффекта образования вихревых токов.
Заключение
Это все, что я хотел вам рассказать о вихревых токах (токах Фуко). Если статья оказалась вам полезна или интересна, то оцените ее лайком. Спасибо за ваше внимание!
Анонимный вопрос
13 сентября 2018 · 3,2 K
Вихревые токи это тоже самое что и магнитное поле. Есть и польза и вред в зависимости от возникновения. С ними или борятся или используют на благо.
Книги, звери и еда – это хобби навсегда.
Вихревые токи – токи, возникающие в проводящих средах благодаря явлению электромагнитной индукции. Вредны они, например, в сердечниках трансформаторов, однако имеют и полезное применение(например, при индукционной плавке металлов)
Зачем нужен переменный ток? Почему нельзя обойтись постоянным?
На самом деле можно было бы обойтись и постоянным напряжением. Совеременное положение дел сложилось исторически. На заре электрофикации напряжение было постоянным. Можете вспомнить знаменитую войну токов – Эдисон против Теслы. На самом деле это была война “медных” магнатов против Теслы. Для передачи постоянного тока были необходимы провода с большим сечением, следовательно, больше меди. Однако развитие технологии тех лет не позволяло передавать постоянный ток на большие расстояния из-за слишком сложного на то время преобразования напряжения в высокое и обратно. А с переменным напряжением это получалось достаточно просто с помощью трансформторов. До сей поры так и поступают. Передача электроэнергии на большие расстояния производится с помощью повышения напряжения. В результате этого можно снижать ток в проводе и, следовательно, уменьшить сечение проводов.
Следует отметить, что и переменный ток также имеет свои недостатки. Например, реактивные потери мощности, а также трудности с синхроницацией частоты при соединениии генераторов и элктросетей разных регионов. Но все же по соотношению недостатков и достоинств в электроэнергетике преимущество за переменным напряжением.
Прочитать ещё 4 ответа
Объясните чайнику: если до Большого взрыва Вселенная была бесконечно мала, то как называлось то пространство, которое ее окружало?
Так нет никакого пространства вне Вселенной. Просто ничего. Да и говорить о том что Вселенная была сжата тоже нельзя и это не правильно, т.к. Вселенную извне нечему сдерживать из вне – там вросто нет абсолютно ничего. Даже называя словами абсолютно ничего мы уже это ничего как-то материализуем, как минимум у этого ничего уже есть название. Так устроен наш мозг. А это то, что вообще не имеет даже навания, потому-что там называть нечего и даже понятия “там” нет. Это тоже самое как открыть флешку в командоре, зайти в нее и представить что существует вне места на флешке. Просто всем, чем можно вообще оперрировать с местом на флешке ограничено. А вне этого ограничения просто физически ничего нет. Вселенная расширяется до тех пор, пока последний атом не будет расщеплен на энергию. Вот стадия Вселенной когда последний атом расщипился и больше нечему расширять пространство. Большая вероятность, что Вселенная начнет тогда схлопываться, концентрируя энергию и уменьшая свой объем. До тех пор, пока концентрат энергии не приведет к образованию первых элементарных частиц (кварки, глюоны) и не запустится процесс вспять и начнутся стадии “конденсат цветного стекла”, “глазма” и т.д. И так до бесконечности. Это наша Вселенная. Она так вечность делает и будет делать. А вот одна ли она и является ли она частью чего-то большго – нам пока-что не известно.
Прочитать ещё 59 ответов
Я понимаю, как вырабатывается электричество. Но откуда берется электричество? Что такое ток, его природа?
IT, телеком, телефония, базы данных, интеграционные решения, естествознание…
Этот вопрос, как капуста, его раскрываешь-раскрываешь, а до “фундаментальной” кочерыжки всё ещё далеко. Хоть вопрос, видимо, касается этой самой кочерыжки, придётся всё же попробовать одолеть всю капусту.
На самый поверхностный взгляд природа тока кажется простой: ток – это когда заряженные частицы движутся. (Если частица не движется, то тока нет, есть только электрическое поле.) Пытаясь постичь природу тока, и не зная из чего состоит ток, выбрали для тока направление, соответствующее направлению движения положительных частиц. Позже оказалось, что неотличимый, точно такой же по действию ток получается при движении отрицательных частиц в противоположном направлении. Эта симметрия является примечательной деталью природы тока.
В зависимости от того, где движутся частицы природа тока тоже различна. Отличается сам текущий материал:
- В металлах есть свободные электроны;
- В металлических и керамических сверхпроводниках – тоже электроны;
- В жидкостях – ионы, которые образуются при протекании химических реакций или при воздействии приложенного электрического поля;
- В газах – снова ионы, а также электроны;
- А вот в полупроводниках электроны несвободны и могут двигаться “эстафетно”. Т.е. двигаться может не электрон, а как бы место, где его нет – “дырка”. Такая проводимость называется дырочной. На спайках разных полупроводников природа такого тока рождает эффекты, делающие возможной всю нашу радиоэлектронику.
У тока две меры: сила тока и плотность тока. Между током зарядов и током, например, воды в шланге больше различий, чем сходства. Но такой взгляд на ток вполне продуктивен, для понимания природы последнего. Ток в проводнике это векторное поле скоростей частиц (если это частицы с одинаковым зарядом). Но мы обычно для описания тока не учитываем эти детали. Мы усредняем этот ток.
Если мы возьмём одну только частицу (естественно заряженную и движущуюся), то ток равный произведению заряда и мгновенной скорости в конкретный момент времени существует ровно там, где находится эта частица. Помните, как было в песне дуэта Иваси “Пора по пиву”: “…если климат тяжёл и враждебен астрал, если поезд ушёл и все рельсы ЗА-БРАЛ…” 🙂
И вот мы пришли к той кочерыжке, которую упоминали вначале. Почему частица имеет заряд (с движением вроде всё ясно, а что же такое заряд)? Наиболее фундаментальные частицы (вот теперь уж точно 🙂 вроде бы неделимые) несущие заряд – это электроны, позитроны (антиэлектроны) и кварки. Отдельно взятый кварк вытащить и исследовать невозможно из-за конфайнмента, с электроном вроде проще, но тоже пока не очень-то ясно. На данный момент видно, что ток квантуется: не наблюдается зарядов меньше заряда электрона (кварки наблюдаются только в виде адронов с совокупным зарядом таким же или нулевым). Электрическое поле отдельно от заряженной частицы может существовать только в связке с магнитным полем, как электромагнитная волна, квантом которой является фотон. Возможно, какие-то интерпретации природы электрического заряда лежат в сфере квантовой физики. Например, предсказанное ею и обнаруженное сравнительно недавно поле Хиггса (есть бозон – есть и поле) объясняет массу ряда частиц, а масса – это мера того, как частица откликается на гравитационное поле. Может быть и с зарядом, как с мерой отклика на электрическое поле, обнаружится какая-то похожая история. Почему есть масса и почему есть заряд – это в чём-то родственные вопросы.
Многое известно о природе электрического тока, но самое главное пока нет.
Прочитать ещё 33 ответа
Иллюстрация возникновения токов Фуко в движущейся в постоянном магнитном поле проводящей (металлической) пластине C. Вектор магнитной индукции B показан зелеными стрелками, вектор V скорости движения пластин — черными стрелками, силовые линии вектора плотности электрического тока I — красным цветом (эти линии замкнутые, “вихревые”).
Источником магнитного поля является постоянный магнит, его фрагмент показан вверху рисунка серым цветом. Вектор магнитной индукции B направлен от северного (N) полюса магнита, магнитное поле пронизывает пластину. В материале пластины, входящем под магнит, т.е. слева, магнитная индукция изменяется во времени, возрастает (dBn/dt > 0), и в соответствии с законами Фарадея и Ома в материале пластины возникает (наводится, “индуцируется”) замкнутый (вихревой) электрический ток. Этот ток течет против часовой стрелки и, по закону Ампера, создает свое собственное магнитное поле, вектор магнитной индукции которого показан синей стрелкой, направленной перпендикулярно плоскости протекания тока, вверх.
Справа, в материале пластины, удаляющемся от магнита, магнитное поле тоже меняется во времени, однако оно ослабевает, и силовые линии возникающего справа еще одного электрического тока направлены по часовой стрелке.
Точно под магнитом “левый” и “правый” вихри токов направлены в одну и ту же сторону, плотность суммарного электрического тока максимальна. На движущиеся в этой области электрические заряды, поток которых образует электрический ток, в сильном магнитном поле действует сила Лоренца, направленная (по правилу левой руки) против вектора скорости V. Эта сила Лоренца тормозит пластину C. Взаимодействие магнитного поля магнита и магнитного поля индуцированных токов приводит к тому, что результирующее распределение потока магнитного поля в окрестности полюса N магнита отличается от случая неподвижной пластины C (и зависит от скорости V), хотя суммарный поток вектора магнитной индукции остается неизменным (при условии, что материал магнита и пластины C не входит в насыщение).
У этого термина существуют и другие значения, см. Ток.
Вихревые токи, или токи Фуко́ (в честь Ж. Б. Л. Фуко) — вихревой[1] индукционный[2] объёмный электрический ток[3], возникающий в электрических проводниках при изменении во времени потока действующего на них магнитного поля.
Впервые вихревые токи были обнаружены французским учёным Д. Ф. Араго (1786—1853) в 1824 г. в медном диске, расположенном на оси под вращающейся магнитной стрелкой. За счёт вихревых токов диск приходил во вращение. Это явление, названное явлением Араго, было объяснено несколько лет спустя M. Фарадеем с позиций открытого им закона электромагнитной индукции: вращаемое магнитное поле наводит в медном диске вихревые токи, которые взаимодействуют с магнитной стрелкой. Вихревые токи были подробно исследованы французским физиком Фуко (1819—1868) и названы его именем. Фуко также открыл явление нагревания металлических тел, вращаемых в магнитном поле, вихревыми токами.
Токи Фуко возникают под действием изменяющегося во времени (переменного) магнитного поля[4] и по физической природе ничем не отличаются от индукционных токов, возникающих в проводах и вторичных обмотках электрических трансформаторов.
Поскольку электрическое сопротивление массивного[5] проводника может быть мало, то сила индукционного электрического тока, обусловленного токами Фуко, может достигать чрезвычайно больших значений. В соответствии с правилом Ленца токи Фуко в объеме проводника выбирают такой путь, чтобы в наибольшей мере противодействовать причине, вызывающей их протекание. Поэтому, в частности, движущиеся в сильном магнитном поле хорошие проводники испытывают сильное торможение, обусловленное взаимодействием токов Фуко с внешним магнитным полем. Этот эффект используется для демпфирования подвижных частей гальванометров, сейсмографов и других приборов без использования силы трения, а также в некоторых конструкциях тормозных систем железнодорожных поездов.
Применение[править | править код]
Тепловое действие токов Фуко используется в индукционных печах, где в катушку, питаемую высокочастотным генератором большой мощности, помещают проводящее тело, в котором возникают вихревые токи, разогревающие его до плавления. Подобным образом работают индукционные плиты, в которых металлическая посуда разогревается вихревыми токами, создаваемыми переменным магнитным полем катушки, расположенной внутри плиты.
С помощью токов Фуко осуществляется прогрев металлических частей вакуумных установок для их дегазации.
В соответствии с правилом Ленца вихревые токи протекают внутри проводника по таким путям и направлениям, чтобы своим действием возможно сильнее противиться причине, которая их вызывает. Вследствие этого при движении в магнитном поле на хорошие проводники действует тормозящая сила, вызываемая взаимодействием вихревых токов с магнитным полем. Этот эффект используется в ряде приборов для демпфирования колебаний их подвижных частей.
Во многих случаях токи Фуко могут быть нежелательными. Для борьбы с ними принимаются специальные меры: с целью предотвращения потерь энергии на нагревание сердечников трансформаторов, эти сердечники набирают из тонких пластин, разделённых изолирующими прослойками (шихтовка). Появление ферритов сделало возможным изготовление этих сердечников сплошными.
Вихретоковый контроль — один из методов неразрушающего контроля изделий из токопроводящих материалов.
Примечания[править | править код]
- ↑ Термин вихревой означает, что силовые линии тока замкнуты.
- ↑ Индукционным называют электрический ток, создаваемый (наводимый) в проводнике за счет взаимодействия проводника с переменным во времени магнитным (электромагнитным) полем, а не за счет действия включенных в разрыв цепи источников тока и ЭДС (гальванических элементов и т.п.).
- ↑ Часто используется термин токи во множественном числе, поскольку токи Фуко представляют собой электрический ток в объеме проводника, и в отличие от индукционного тока во вторичной обмотке трансформатора затруднительно указать единственную “электрическую цепь” для тока, единственную замкнутую траекторию движения электрических зарядов в толще проводника.
- ↑ Строго говоря — под действием переменного электромагнитного поля
- ↑ То есть обладающего большой площадью поперечного току сечения
Литература[править | править код]
- Сивухин Д. В.: Общий курс физики, том 3. Электричество. 1977
- Савельев И. В.: Курс общей физики, том 2. Электричество. 1970
- Неразрушающий контроль: справочник: В 7т. Под общ. ред. В. В. Клюева. Т. 2: В 2 кн.-М.:Машиностроение, 2003.-688 с.: ил.
Ссылки[править | править код]
- Про вихревые токи в «Школе для электрика»