Что служит коэффициентом полезного действия для обратного цикла карно
В термодинамике цикл Карно́ или процесс Карно — это идеальный[1]круговой процесс, состоящий из двух адиабатных и двух изотермических процессов[2]. В процессе Карно термодинамическая система выполняет механическую работу за счёт обмена теплотой с двумя тепловыми резервуарами, имеющими постоянные, но различающиеся температуры. Резервуар с более высокой температурой называется нагревателем, а с более низкой температурой — холодильником[3].
Цикл Карно назван в честь французского учёного и инженера Сади Карно, который впервые его описал в своём сочинении «О движущей силе огня и о машинах, способных развивать эту силу» в 1824 году[4][5].
Поскольку идеальные процессы могут осуществляться лишь с бесконечно малой скоростью, мощность тепловой машины в цикле Карно равна нулю. Мощность реальных тепловых машин не может быть равна нулю, поэтому реальные процессы могут приближаться к идеальному процессу Карно только с большей или меньшей степенью точности.
Коэффициент полезного действия (КПД) любой тепловой машины не может превосходить КПД идеальной тепловой машины, работающей по циклу Карно с теми же самыми температурами нагревателя и холодильника[6]. По этой причине, позволяя оценить верхний предел КПД тепловой машины, цикл Карно важен для теории тепловых машин. В то же время КПД цикла Карно настолько чувствителен к отклонениям от идеальности (потерям на трение), что данный цикл никогда не применяли в реальных тепловых машинах[K 1][8].
Описание цикла Карно[править | править код]
Рис. 1. Цикл Карно в координатах T—S
Рис. 2. Цикл Карно в координатах p—V
Рис. 3. Цикл Карно на термодинамической поверхности идеального газа
Пусть тепловая машина состоит из нагревателя с температурой , холодильника с температурой и рабочего тела.
Цикл Карно состоит из четырёх обратимых стадий, две из которых осуществляются при постоянной температуре (изотермически), а две — при постоянной энтропии (адиабатически). Поэтому цикл Карно удобно представить в координатах (температура) и (энтропия).
1. Изотермическое расширение (на рис. 1 — процесс A→B). В начале процесса рабочее тело имеет температуру , то есть температуру нагревателя. При расширении рабочего тела его температура не падает за счет передачи от нагревателя количества теплоты , то есть расширение происходит изотермически (при постоянной температуре) . При этом объём рабочего тела увеличивается, оно совершает механическую работу, а его энтропия возрастает.
2. Адиабатическое расширение (на рис. 1 — процесс B→C). Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой. При этом температура тела уменьшается до температуры холодильника , тело совершает механическую работу, а энтропия остаётся постоянной.
3. Изотермическое сжатие (на рис. 1 — процесс C→D). Рабочее тело, имеющее температуру , приводится в контакт с холодильником и начинает изотермически сжиматься под действием внешней силы, отдавая холодильнику количество теплоты . Над телом совершается работа, его энтропия уменьшается.
4. Адиабатическое сжатие (на рис. 1 — процесс D→A). Рабочее тело отсоединяется от холодильника и сжимается под действием внешней силы без теплообмена с окружающей средой. При этом его температура увеличивается до температуры нагревателя, над телом совершается работа, его энтропия остаётся постоянной.
Обратный цикл Карно[править | править код]
В термодинамике холодильных установок и тепловых насосов рассматривают обратный цикл Карно, состоящий из следующих стадий[9][10]: адиабатического сжатия за счёт совершения работы (на рис. 1 — процесс В→Б); изотермического сжатия с передачей теплоты более нагретому тепловому резервуару (на рис. 1 — процесс Б→А); адиабатического расширения (на рис. 1 — процесс А→Г); изотермического расширения с отводом теплоты от более холодного теплового резервуара (на рис. 1 — процесс Г→В).
КПД тепловой машины Карно[править | править код]
Количество теплоты, полученное рабочим телом от нагревателя при изотермическом расширении, равно
Аналогично, при изотермическом сжатии рабочее тело отдаёт холодильнику
Отсюда коэффициент полезного действия тепловой машины Карно равен
Первая и вторая теоремы Карно[править | править код]
Из последнего выражения следует, что КПД тепловой машины, работающей по циклу Карно, зависит только от температур нагревателя и холодильника, но не зависит ни от устройства машины, ни от вида или свойств её рабочего тела. Этот результат составляет содержание первой теоремы Карно[11]. Кроме того, из него следует, что КПД может составлять 100 % только в том случае, если температура холодильника равна абсолютному нулю. Это невозможно, но не из-за недостижимости абсолютного нуля (этот вопрос решается только третьим началом термодинамики, учитывать которое здесь нет необходимости), а из-за того, что такой цикл или нельзя замкнуть, или он вырождается в совокупность двух совпадающих адиабат и изотерм.
Поэтому максимальный КПД любой тепловой машины не может превосходить КПД тепловой машины Карно, работающей при тех же температурах нагревателя и холодильника. Это утверждение называется второй теоремой Карно[12][13]. Оно даёт верхний предел КПД любой тепловой машины и позволяет оценить отклонение реального КПД от максимального, то есть потери энергии вследствие неидеальности тепловых процессов.
Связь между обратимостью цикла и КПД[править | править код]
Для того чтобы цикл был обратимым, в нём должна быть исключена передача теплоты при наличии разности температур, иначе нарушается условие адиабатичности процесса. Поэтому передача теплоты должна осуществляться либо в изотермическом процессе (как в цикле Карно), либо в эквидистантном процессе (обобщённый цикл Карно или, для примера, его частный случай Цикл Брайтона). Для того чтобы менять температуру рабочего тела от температуры нагревателя до температуры холодильника и обратно, необходимо использовать либо адиабатические процессы (они идут без теплообмена и, значит, не влияют на энтропию), либо циклы с регенерацией тепла при которых нет передачи тепла при разности температур. Мы приходим к выводу, что любой обратимый цикл может быть сведён к циклу Карно.
Примером обратимого цикла, не являющегося циклом Карно, но интегрально совпадающим с ним, является идеальный цикл Стирлинга: в двигателе Стирлинга добавлен регенератор, обеспечивающий полное приближение цикла к циклу Карно с достижением обратимости и тех же величин КПД[14]. Возможны и другие идеальные циклы, в которых коэффициент полезного действия определяется по той же формуле, что и для циклов Карно и Стирлинга, например цикл Эрикссона (англ.)русск., состоящий из двух изобар и двух изотерм[14].
Если же в цикле возникает передача теплоты при наличии разности температур, а таковыми являются все технические реализации термодинамических циклов, то цикл утрачивает свойство обратимости. Иначе говоря, посредством отведённой в цикле механической работы становится невозможным получить исходную теплоту. КПД такого цикла будет всегда меньше, чем КПД цикла Карно.
См. также[править | править код]
- Термодинамические циклы
- Первое начало термодинамики
- Второе начало термодинамики
- Термодинамическая энтропия
- Термодинамические потенциалы
Комментарии[править | править код]
- ↑ В реальных тепловых машинах цикл Карно не используют, поскольку практически невозможно осуществить процессы изотермического сжатия и расширения. Кроме того, полезная работа цикла, представляющая собой алгебраическую сумму работ во всех четырех составляющих цикл частных процессах, даже в идеальном случае полного отсутствия потерь мала по сравнению с работой в каждом из частных процессов, то есть мы имеем дело с обычной ситуацией, когда итоговый результат представляет собой малую разность больших величин. Применительно к математическим вычислениям это означает высокую отзывчивость результата даже на небольшие вариации значений исходных величин, а в рассматриваемом нами случае соответствует высокой чувствительности полезной работы цикла Карно и его КПД к отклонениям от идеальности (потерям на трение). Эта связь с отклонениями от идеальности настолько велика, что с учетом всех потерь полезная работа цикла Карно приближается к нулю[7].
Примечания[править | править код]
- ↑ То есть без потерь, в первую очередь на трение.
- ↑ Карно цикл // Италия — Кваркуш. — М. : Советская энциклопедия, 1973. — (Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров ; 1969—1978, т. 11).
- ↑ Сивухин, Т. II. Термодинамика и молекулярная физика, 2005, с. 94.
- ↑ Carnot S. Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance. — Paris: Gauthier-Villars, Imprimeur-Libraire, 1878. — 102 p. (фр.)
- ↑ Второе начало термодинамики. (Работы Сади Карно — В. Томсон — Кельвин — Р. Клаузиус — Л. Больцман — М. Смолуховский) / Под. ред. А. К. Тимирязева. — Москва—Ленинград: Государственное технико-теоретическое издательство, 1934. — С. 17—61.
- ↑ Сивухин, Т. II. Термодинамика и молекулярная физика, 2005, с. 113—114.
- ↑ Бэр Г. Д., Техническая термодинамика, 1977, с. 112.
- ↑ Кинан Дж., Термодинамика, 1963, с. 93.
- ↑ Николаев Г. П., Лойко А. Э., Техническая термодинамика, 2013, с. 172.
- ↑ Бахшиева Л. Т. и др., Техническая термодинамика и теплотехника, 2008, с. 148.
- ↑ Сивухин, Т. II. Термодинамика и молекулярная физика, 2005, с. 95.
- ↑ Сивухин, Т. II. Термодинамика и молекулярная физика, 2005, с. 113.
- ↑ Румер Ю. Б., Рывкин М. Ш., Термодинамика, статистическая физика и кинетика, 2000, с. 35.
- ↑ 1 2 Крестовников А. Н., Вигдорович В. Н., Химическая термодинамика, 1973, с. 63.
Литература[править | править код]
- Carnot S. Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance. — Paris: Gauthier-Villars, Imprimeur-Libraire, 1878. — 102 p. (фр.)
- Бахшиева Л. Т., Кондауров Б. П., Захарова А. А., Салтыкова В. С. Техническая термодинамика и теплотехника / Под ред. проф А. А. Захаровой. — 2-е изд., испр. — М.: Академия, 2008. — 272 с. — (Высшее профессиональное образование). — ISBN 978-5-7695-4999-1.
- Бэр Г. Д. Техническая термодинамика. — М.: Мир, 1977. — 519 с. (недоступная ссылка)
- Кинан Дж. Термодинамика / Пер с англ. А. Ф. Котина под ред. М. П. Вукаловича. — М.—Л.: Госэнергоиздат, 1963. — 280 с.
- Ландау Л. Д., Лифшиц Е. М. Статистическая физика. Часть 1. — Издание 3-е, доп. — М.: Наука, 1976. — 584 с. — («Теоретическая физика», том V).
- Крестовников А. Н., Вигдорович В. Н. Химическая термодинамика. — 2-е изд., испр. и доп. — М.: Металлургия, 1973. — 256 с.
- Николаев Г. П., Лойко А. Э. Техническая термодинамика. — Екатеринбург: УрФУ, 2013. — 227 с.
- Румер Ю. Б., Рывкин М. Ш. Термодинамика, статистическая физика и кинетика. — 2-е изд., испр. и доп. — Новосибирск: Изд-во Носиб. ун-та, 2000. — 608 с. — ISBN 5-7615-0383-2.
- Савельев И. В. Курс общей физики:Молекулярная физика и термодинамика. — М.: Астрель, 2001. — Т. 3. — 208 с. — 7000 экз. — ISBN 5-17-004585-9.
- Сивухин Д. В. Общий курс физики. — Т. II. Термодинамика и молекулярная физика. — 5 изд., испр.. — М.: ФИЗМАТЛИТ, 2005. — 544 с. — ISBN 5-9221-0601-5.
Из анализа цикла Карно следует, что нельзя полностью превратить в механическую работу тепловую энергию, полученную от нагревателя. Часть этого тепла непременно должна быть передана холодильнику. Если количество теплоты, полученное рабочим телом от нагревателя, равно Q0, а в работу преобразована часть Q0-Q1этой теплоты, то соотношение
представляет коэффициент полезного действия кругового процесса. Как следует из формулы (1.35), коэффициент полезного действия (КПД) цикла Карно определяется равенством
.
Полученное значение КПД является наибольшим, потому что полностью все процессы цикла Карно были обратимыми. В природе нет замкнутых циклов с КПД больше чем у цикла Карно.
Приведем теоремы Карно: 1) Тепловая машина, работающая при данных значениях температур нагревателя и холодильника, не может иметь КПД, больше чем машина, работающая по обратимому циклу Карно при тех же значениях температур нагревателя и холодильника. 2) КПД цикла Карно не зависит от рабочего тела, а зависит только от температур нагревателя и холодильника.
Холодильная машина
Обратимый процесс характеризуется тем, что если его провести в обратном направлении, то тело, участвующее в процессе пройдёт через те же состояния, но в обратном порядке.
Если цикл Карно провести в обратном направлении, то тепло будет передаваться не от нагревателя к холодильнику, наоборот, от холодильника к нагревателю (рис.4). Если процесс идёт, как показано стрелкой, полезная работа буде меньше, чем работа, совершаемая внешними силами. Поэтому результатом обратного цикла Карно будет не внешняя полезная работа, а перенос тепла от холодильника к нагревателю, т. е. перевод от менее нагретого тела к более нагретому телу. Если прямой цикл Карно служит для превращение теплоты в работу, то машина действующая по обратному циклу Карно используется для передачи тепла от менее нагретого тела к более нагретому, т. е. является холодильной машиной. С её помощью за счёт внешней работы тепло отнимается у более холодного тела и передаётся к более нагретому.
Поскольку КПД цикла Карно является максимальным, имеем следующее неравенство
(1.36)
где Q0-количество теплоты, отданное рабочему телу нагревателем, а Q1-количество теплоты полученное от рабочего тела холодильником.
Но если рассматривать процесс с точки зрения изменений, происходящих в самом рабочем теле, то Q0 и Q1 – это количество теплоты полученное и отданное рабочим телом. Этим величинам Q0и Q1нужно, очевидно, приписать противоположные знаки.
Будем считать полученное телом количество теплоты Q0 положительным, тогда Q1– отрицательно. Следовательно, неравенство (1.36) перепишется в виде
или
(1.37)
Если круговой процесс является обратимым, то
(1.38)
Таким образом, в случае цикла Карно, сумма отношений теплот участков к их температурам, для всего замкнутого контура равна нулю.
Свободная энергия
Представим, что система совершает изотермический процесс (расширение или сжатие). Расширяясь, газ, может произвести механическую работу, следовательно, газ обладает некоторой энергией. Та часть энергии, которая при данном условии может быть превращена в механическую работу, называется свободной энергией.
Система не может совершить работу, превышающую значение её свободной энергии. В механике механическая макроскопическая энергия системы может быть полностью превращена в работу. Внутренняя энергия молекулярной системы в случае изотермического процесса не может быть целиком превращена в работу. Поэтому, если мы интересуемся величиной работы, которую система в данном состоянии может произвести при изотермическом процессе, то внутренняя энергия не является подходящей характеристикой этого состояния. Внутренняя энергия характеризует состояние системы, если интересуемся работой, которую способна эта система произвести при адиабатическом процессе A=DU. Свободная энергия должна характеризовать систему с точки зрения её работоспособности при изотермическом изменении её состояния.
Свободная энергия системы измеряется работой, которую может произвести система, изменяя своё состояние изотермически и обратимо от состояния, в котором она находится, до выбранного нами начального состояния, при котором свободная энергия предполагается равной нулю, dA=-dF, где F– свободная энергия.
Внутренняя энергия идеального газа не зависит от занимаемого им объёма: один моль газа сжатый в баллоне имеет такую же внутреннюю энергию как и не сжатый газ при той же температуре. Но сжатый газ имеет большую свободную энергию, поскольку при изотермическом расширении может совершать большую работу. В случае необратимых процессов dA<dF.
Возможны такие случаи, когда изменение свободной энергии вообще не сопровождается совершением работы. Если идеальный газ расширится в пустоту, то никакой работы не совершается. Температура, а значит, и внутренняя энергия газа также остаются неизменными. Между тем свободная энергия газа уменьшается, так как уменьшается работа, которую газ может совершить.
Энтропия
Из цикла Карно мы видим, что количество тепла, которое должно быть доставлено телу или отнято у него при переходе из одного состояние в другое не определяется начальными и конечными состояниями, но существенно зависит от способа осуществления этого перехода. Функция Q не является функцией состояния, как внутренняя энергия и свободная энергия. Это видно из уравнения первого закона термодинамики
dQ=dU+dA.
Так как dA зависит от пути перехода, то и dQ будет зависеть от способа перехода из одного состояния в другое. Количество теплоты Q0, доставленное телу от нагревателя при температуре T0 не равно количеству теплоты Q1, переданное им холодильнику при температуре T1. В то же время равны между собой
.
Величину называют приведённой теплотой и это равенство говорит о равенстве приведённых тепло, полученных или отданных рабочим телом при круговом процессе. Кроме того, как следует из выражения (1.38), сумма приведенных теплот в замкнутом цикле Карно равняется нулю. Эта особенность теплоты позволяет ввести особую термодинамическую величину- энтропию, имеющую фундаментальное значение в физике.
Любое изменение состояния тела в общем случае можно представить как результат бесконечно большого числа бесконечно малых изменений. При таком бесконечно малом изменении состояния система либо поглощает, либо выделяет бесконечно малое количество тепла dQ. Можно показать, что если в результате каких-либо изменений состояния обратимым путём система переходит из состояния A в состояние B, то сумма приведённых количеств теплоты
не зависит от пути от A к B, для круговых процессов . Это даёт нам право утверждать, что присутствует некоторая величина S, являющаяся функцией состояния системы, причем
.
Эта формула позволяет определить не абсолютное значение функции, соответствующее данному состоянию, а лишь её изменением при переходе от одного состояния к другому. Обычно значение энтропии одного из состояний берут равной нулю. Тогда
.
Это и есть энтропия системы в данном состоянии. На практике важно только изменение энтропии при изменении состояния системы, поэтому неважно, к какому состоянию приписать нулевое значение энтропии. Принято считать энтропию равной нуль в состоянии, когда T=0.
Таким образом, элементарное изменение энтропии определяется выражением
.
Отметим, что dQ не является полным дифференциалом, так как Q не является функцией состояния, dQ становится полным дифференциалом после деления на T. Величина 1/T является интегрирующим множителем для dQ.
С учетом выражения для dS первый закон термодинамики можно записать в виде
. (1.39)
Это уравнение носит название термодинамического тождества. Его называют вторым началом термодинамики для обратимых процессов. Если круговой процесс, претерпеваемый системой необратим, то
.
Это выражение называется неравенством Клаузиуса.
Дата добавления: 2015-11-05; просмотров: 3178 | Нарушение авторских прав | Изречения для студентов
Читайте также:
Рекомендуемый контект:
Поиск на сайте:
© 2015-2020 lektsii.org – Контакты – Последнее добавление