Что называют коэффициентом полезного действия теплового двигателя

В тепловых двигателях используется энергия сгорающего топлива. Однако, не вся энергия сгорающего топлива затрачивается на полезную работу, часть энергии безвозвратно рассеивается в окружающую среду.

Чем меньше эта утерянная часть теплоты, тем выше будет эффективность двигателя и его коэффициент полезного действия. Тем больше полезной работы сможет совершить газ при расширении, толкая поршень двигателя, или раскручивая диск газовой турбины.

Элементы тепловой машины

Конструкции тепловых машин отличаются разнообразием. Однако, из каких бы частей двигатель не состоял, он всегда содержит рабочее тело, холодильник и нагреватель (рис. 1).

Рис. 1. Любой тепловой двигатель всегда содержит три ключевых элемента

Например, в двигателе внутреннего сгорания рабочим телом будут пары топлива и воздух.

В двигателе внутреннего сгорания роль нагревателя совместно выполняют свеча и поршень. Однако, поршень выполняет функции нагревателя только тогда, когда он сжимает газ. А свеча зажигает сжатый газ с помощью искры и вызывает горение топлива.

Чтобы передать остатки тепловой энергии атмосфере, двигатели с воздушным охлаждением имеют специальные ребристые поверхности на наружной части цилиндров.

А двигатели, в которых используется жидкостное (водяное) охлаждение, содержат насос, прокачивающий жидкость в специальных полостях двигателя и радиатор с вентилятором. Жидкость интенсивно охлаждается в радиаторе, а вентилятор обеспечивает обдув, чтобы ускорить охлаждение. Температура охлаждающей жидкости всегда выше температуры окружающего воздуха.

Какие функции выполняет каждый элемент

От нагревателя рабочее тело — газ, или пар, получает запас тепловой энергии (рис. 2). Затем, полученная энергия делится на две, как правило, неравные части. За счет одной части совершается работа.

Рис. 2. Функции ключевых элементов тепловых машин

А оставшаяся часть передается холодильнику (например, атмосфере) и рассеивается окружающей средой.

Роль холодильника в тепловом двигателе

Совершая работу, рабочее тело – расширяющийся газ, охлаждается. Температура (T_{x}), до которой газ охладился, называется температурой холодильника.

Так как газ, расширяясь, охлаждается, а при охлаждении энергию нужно куда-то девать, то никакая тепловая машина без холодильника работать не сможет. Чтобы функционировать, тепловая машина обязательно должна отдавать часть тепловой энергии холодильнику.

Обычно температура (T_{x}) немного выше температуры окружающей среды. Но если речь идет о паровых машинах, оснащенных специальным приспособлением для конденсации отработанного пара и его охлаждения – конденсатором, то (T_{x}) может быть несколько ниже температуры окружающей атмосферы (рис. 3).

Рис. 3. Если холодильником служит атмосфера, то температура холодильника выше атмосферной, а если – конденсатор, то температура холодильника ниже температуры окружающей среды

Примечание: Паровой конденсатор применяется только в конструкциях паровых двигателей.

На какие части делится энергия нагревателя

Мы выяснили, что за счет одной части энергии газ совершает работу. Вторая часть полученной от нагревателя энергии передается холодильнику, который затем рассеивает ее в окружающее пространство (рис. 4).

Эта теплота выбрасывается в атмосферу вместе с отработанным паром, или сгоревшими выхлопными газами турбин и двигателей внутреннего сгорания – то есть, теряется безвозвратно.  Главное то, что никакой газ не превращает свою внутреннюю энергию в работу полностью. Часть энергии неизбежно будет утеряна.

На полезную работу тратится только часть полученной энергии.

Рис. 4. Энергия нагревателя частично расходуется на совершение работы, оставшаяся часть теряется в окружающую среду

Посмотрев на рисунок 4, легко составить связь между энергией нагревателя, работой и энергией холодильника.

[large boxed{ Q_{H} =  Q_{X} + A }]

(large Q_{H} left(text{Дж} right) ) – тепловая энергия, полученная от нагревателя;

(large Q_{X} left(text{Дж} right) ) – тепловая энергия, переданная холодильнику;

(large A left(text{Дж} right) ) – работа, которую совершил расширяющийся газ (пар);

Так как часть энергии теряется, работа всегда будет меньше полученной энергии. Работу и энергию измеряют в джоулях. Работа – это затраченная энергия, то есть, разница между конечной и начальной энергией.

[large boxed{ Q_{H} — left| Q_{X} right| = A }]

Примечание: Полученная энергия берется со знаком «плюс», а утерянная – со знаком «минус». Нам уже известно, что энергия (Q_{X}), переданная холодильнику и утерянная, будет отрицательной. Запишем ее по модулю, чтобы не учитывать в формуле ее знак.

Формулы коэффициента полезного действия

Мы уже выяснили, что работа газа всегда меньше полученной теплоты. Чтобы ответить на вопрос, какую часть от полученной теплоты будет составлять работа, составим дробь:

[large frac{A}{Q_{H}}]

(large A left(text{Дж} right) ) – работа газа;

Эту дробь обозначают греческой буквой «эта» (eta) и называют коэффициентом полезного действия (КПД). Так как этот коэффициент дает понятие о том, как соотносятся работа, совершенная газом и, полученная им тепловая энергия.

[large boxed{eta = frac{A}{Q_{H}} }]

Числитель этой дроби всегда меньше знаменателя, математики такие дроби называют правильными. Если КПД теплового двигателя описывается правильной дробью, значит, он не может превышать единицу (рис. 5).

Рис. 5. КПД отвечает на вопрос: какая часть полученной энергии тратится на полезную работу

КПД теплового двигателя не превышает единицу, так как описывается правильной дробью.

Если подставить в числитель выражение для работы, получим развернутое выражение для вычисления КПД:

[large boxed{ eta = frac{ Q_{H} — left| Q_{X} right|}{Q_{H}} }]

Правая часть уравнения – это две дроби, имеющие одинаковые знаменатели. Если записать правую часть в виде отдельных дробей, то можно получить такое соотношение:

[large frac{ Q_{H} — left| Q_{X} right|}{Q_{H}} = frac{Q_{H}}{Q_{H}} — frac{left| Q_{X} right|}{Q_{H}} = 1 — frac{left| Q_{X} right|}{Q_{H}} ]

Подставим его в выражение для КПД и получим еще одну формулу:

[large boxed{ eta = 1 — frac{left| Q_{X} right|}{Q_{H}} }]

Какой максимальный КПД может иметь тепловой двигатель

Талантливый французский ученый и инженер Сади Карно в 1824 году придумал идеальную тепловую машину. В качестве рабочего тела в ней выступал идеальный газ. А сосуд, в который заключен газ, обернут теплоизоляцией, которую можно мысленно снять, когда возникнет такая необходимость.

Проведя мысленный эксперимент, Карно рассчитал, какую часть полученной энергии можно превратить в полезную работу при идеальных условиях. Другими словами, он рассчитал, какой максимально возможный КПД может иметь идеальный тепловой двигатель.

Для КПД идеального двигателя он получил такую формулу:

[large boxed{ eta = frac{ T_{H} — T_{X}}{T_{H}} = 1 — frac{T_{X}}{T_{H}} }]

(large T_{H} left(Kright) ) – температура нагревателя в градусах Кельвина;

(large T_{X} left(Kright) ) – температура холодильника в градусах Кельвина;

Из формулы следует:

Чем больше различаются температуры нагревателя и холодильника, тем выше будет КПД.

Если температура нагревателя сравняется с температурой холодильника, то полезной работы машина не совершит (large eta = 0 ).

Максимальный КПД даже для идеального теплового двигателя всегда меньше единицы.

Температура холодильника не может равняться абсолютному нулю, так как достигнуть абсолютного нуля температуры не получается.

Примечание: В идеальном двигателе нет потерь энергии, так как полностью отсутствует трение между его движущимися частями. В реальных двигателях трение есть, поэтому КПД реальных двигателей всегда ниже, чем КПД идеального двигателя.

КПД реальных тепловых двигателей

КПД лучших образцов реальных двигателей, выпускаемых мировой промышленностью:

  • паровых машин — менее 10 процентов.
  • большинства двигателей внутреннего сгорания – до 30 процентов.
  • газовых турбин — примерно 40 процентов.
  • двигателя внутреннего сгорания Дизеля – около 44 процентов.

В настоящее время инженеры и ученые-физики работают над тем, чтобы в реальных двигателях уменьшить трение и потери тепловой энергии. Чтобы повысить давление в цилиндре, применяют дополнительные компрессоры и турбины. Это дает выигрыш еще в несколько процентов полезности, однако, сокращает срок службы таких двигателей.

Так называемые «атмосферники» — атмосферные двигатели внутреннего сгорания, в которых не применяются дополнительные турбины и компрессоры, повышающие рабочее давление в цилиндрах, могут без капитального ремонта прослужить на автомобилях весьма длительное время.

Некоторые автомобили, оснащенные особо удачными конструкциями двигателей, успевали без капитального ремонта двигателя проехать до 1 миллиона километров. Из-за этого, такие конструкции двигателей получили в народе название «миллионники». К сожалению, ныне выпуск подобных двигателей резко сокращен, из экономических соображений.

Выводы

  1. В настоящее время изобретено много тепловых двигателей, имеющих различную конструкцию. Но любая тепловая машина всегда содержит нагреватель, холодильник и рабочее тело.
  2. Нагреватель нужен для того, чтобы сообщать тепловую энергию рабочему телу.
  3. В качестве рабочего тела используется горячий пар, или раскаленный газ. Рабочее тело полученную тепловую энергию делит на две части. За счет одной части газ расширяется и совершает работу. Вторую часть энергии передается холодильнику.
  4. Никакая тепловая машина не может работать без холодильника. Тепловая энергия, передаваемая холодильнику, рассеивается в окружающую среду и теряется безвозвратно. Даже КПД идеального теплового двигателя будет меньше единицы.
  5. Показатель полезного действия можно посчитать, взяв отношение совершенной работы A к полученному от нагревателя количеству теплоты Q.
  6. Реальные двигатели внутреннего сгорания, сконструированные инженером Дизелем, имеют максимальный КПД 44 процента. Это непревзойденный на сегодняшний день показатель среди всех выпускаемых промышленностью тепловых машин, не оснащенных дополнительными компрессорами.

Источник

Начнем с определения. Коэффициент полезного действия двигателя внутреннего сгорания – характеристика, которая свидетельствует об эффективности агрегата. Это отношение полезной энергии к полной затраченной в процентном отношении. Другими словами, речь идет о результате преобразования тепловой энергии, получаемой при сгорании топливно-воздушной смеси, в механическую. Казалось бы, КПД должен быть высоким! Не зря же производители почти повсеместно внедрили непосредственный впрыск топлива, турбонагнетатели и выжимают солидную мощность из сравнительно компактных установок? Для сравнения, в недалеком прошлом атмосферные 2,0-литровые агрегаты развивали 140-150 л.с., а сейчас подобной отдачей могут похвастаться двигатели объемом 1,5 л, но с наддувом.

Значения КПД бензиновых и дизельных двигателей

Тем удивительнее то, что данный параметр для бензиновых агрегатов со всеми их высокотехнологичными ухищрениями равен… 20-25%. Львиная доля энергии, полученная при сгорании топлива, расходуется непосредственно на потери и лишь малая часть непосредственно на полезную работу двигателя внутреннего сгорания. У дизельных моторов картина не в пример лучше коэффициент полезного действия атмосферных моторов находится на уровне 40% и достигает 50% и более при наличии турбонагнетателя, который используется повсеместно и превращает ДВС более эффективную установку.

Потери бензинового двигателя

Существует целый ряд причин, почему коэффициент полезного действия ДВС находится на столь невысоком уровне. В случае с бензиновыми агрегатами примерно 25% потерь КПД приходится на топливную эффективность из-за того, что топливно-воздушная смесь сгорает не полностью. На тепловые потери расходуется около 35% – огромное количество тепла, которое выделяет двигатель и есть те самые потери энергии, поскольку для получения тепла требуется энергия.

Порядка 20% тратится на механические потери или, проще говоря, потери на трение внутренних частей двигателя, а также на привод дополнительного навесного оборудования, к которому относится генератор, кондиционер, помпа системы охлаждения и другие агрегаты. Как видите, причина весьма низкого КПД бензиновых агрегатов кроется в больших тепловых и механических потерях, возникающих в процессе работе установок данного типа.

Интересно, что снижение последних в ряде случаев привело к снижению надежности ДВС и эта тенденция особенно заметна в моторах последних поколений. Такие компоненты как поршни, шейки коленвалов и звенья цепей газораспределительного механизма стали компактнее, миниатюрнее. А более жидкие масла при сниженном давлении должны снизить потери на трение в подшипниках и энергетические затраты на смазку.

Потери дизельного двигателя

Противники моторов на “тяжелом топливе”, не жалующие их за вибрации, шумность, особенности моментной характеристики (солидный крутящий момент доступен на низких и средних оборотах, но при этом дизели “крутятся” довольно неохотно) и, самое главное, за риск столкнуться с невозможностью запуска зимой из-за замерзшей солярки, наверняка удивятся, узнав о двукратном превосходстве в коэффициенте полезного действия перед бензиновой когортой. Объяснение этому явлению кроется в другом принципе формирования топливно-воздушной смеси и том, как именно происходит ее воспламенение.

Источник

Подробности

Просмотров: 658

«Физика – 10 класс»

Что такое термодинамическая система и какими параметрами характеризуется её состояние.
Сформулируйте первый и второй законы термодинамики.

Именно создание теории тепловых двигателей и привело к формулированию второго закона термодинамики.

Запасы внутренней энергии в земной коре и океанах можно считать практически неограниченными. Но для решения практических задач располагать запасами энергии ещё недостаточно. Необходимо так же уметь за счёт энергии приводить в движение станки на фабриках и заводах, средства транспорта, тракторы и другие машины, вращать роторы генераторов электрического тока и т. д. Человечеству нужны двигатели — устройства, способные совершать работу. Большая часть двигателей на Земле — это тепловые двигатели.

Тепловые двигатели — это устройства, превращающие внутреннюю энергию топлива в механическую работу.

Принцип действия тепловых двигателей.

Для того чтобы двигатель совершал работу, необходима разность давлений по обе стороны поршня двигателя или лопастей турбины. Во всех тепловых двигателях эта разность давлений достигается за счёт повышения температуры рабочего тела (газа) на сотни или тысячи градусов по сравнению с температурой окружающей среды. Такое повышение температуры происходит при сгорании топлива.

Одна из основных частей двигателя — сосуд, наполненный газом, с подвижным поршнем. Рабочим телом у всех тепловых двигателей является газ, который совершает работу при расширении. Обозначим начальную температуру рабочего тела (газа) через T1. Эту температуру в паровых турбинах или машинах приобретает пар в паровом котле. В двигателях внутреннего сгорания и газовых турбинах повышение температуры происходит при сгорании топлива внутри самого двигателя. Температуру Т1 называют температурой нагревателя.

Роль холодильника.

По мере совершения работы газ теряет энергию и неизбежно охлаждается до некоторой температуры Т2, которая обычно несколько выше температуры окружающей среды. Её называют температурой холодильника. Холодильником является атмосфера или специальные устройства для охлаждения и конденсации отработанного пара — конденсаторы. В последнем случае температура холодильника может быть немного ниже температуры окружающего воздуха.

Таким образом, в двигателе рабочее тело при расширении не может отдать всю свою внутреннюю энергию на совершение работы. Часть тепла неизбежно передаётся холодильнику (атмосфере) вместе с отработанным паром или выхлопными газами двигателей внутреннего сгорания и газовых турбин.

Что называют коэффициентом полезного действия теплового двигателя

Эта часть внутренней энергии топлива теряется. Тепловой двигатель совершает работу за счёт внутренней энергии рабочего тела. Причём в этом процессе происходит передача теплоты от более горячих тел (нагревателя) к более холодным (холодильнику). Принципиальная схема теплового двигателя изображена на рисунке 13.13.

Рабочее тело двигателя получает от нагревателя при сгорании топлива количество теплоты Q1, совершает работу А’ и передаёт холодильнику количество теплоты Q2 < Q1.

Для того чтобы двигатель работал непрерывно, необходимо рабочее тело вернуть в начальное состояние, при котором температура рабочего тела равна Т1. Отсюда следует, что работа двигателя происходит по периодически повторяющимся замкнутым процессам, или, как говорят, по циклу.

Цикл — это ряд процессов, в результате которых система возвращается в начальное состояние.

Коэффициент полезного действия (КПД) теплового двигателя.

Невозможность полного превращения внутренней энергии газа в работу тепловых двигателей обусловлена необратимостью процессов в природе. Если бы тепло могло самопроизвольно возвращаться от холодильника к нагревателю, то внутренняя энергия могла бы быть полностью превращена в полезную работу с помощью любого теплового двигателя. Второй закон термодинамики может быть сформулирован следующим образом:

Второй закон термодинамики:
невозможно создать вечный двигатель второго рода, который полностью превращал бы теплоту в механическую работу.

Согласно закону сохранения энергии работа, совершаемая двигателем, равна:

А’ = Q1 – |Q2|,         (13.15)

где Q1 — количество теплоты, полученной от нагревателя, a Q2 — количество теплоты, отданной холодильнику.

Коэффициентом полезного действия (КПД) теплового двигателя называют отношение работы А’, совершаемой двигателем, к количеству теплоты, полученной от нагревателя:

Так как у всех двигателей некоторое количество теплоты передаётся холодильнику, то η < 1.

Максимальное значение КПД тепловых двигателей.

Законы термодинамики позволяют вычислить максимально возможный КПД теплового двигателя, работающего с нагревателем, имеющим температуру Т1, и холодильником с температурой Т2, а также определить пути его повышения.

Впервые максимально возможный КПД теплового двигателя вычислил французский инженер и учёный Сади Карно (1796—1832) в труде «Размышления о движущей силе огня и о машинах, способных развивать эту силу» (1824).

Что называют коэффициентом полезного действия теплового двигателя

Карно придумал идеальную тепловую машину с идеальным газом в качестве рабочего тела. Идеальная тепловая машина Карно работает по циклу, состоящему из двух изотерм и двух адиабат, причем эти процессы считаются обратимыми (рис. 13.14). Сначала сосуд с газом приводят в контакт с нагревателем, газ изотермически расширяется, совершая положительную работу, при температуре Т1, при этом он получает количество теплоты Q1.

Затем сосуд теплоизолируют, газ продолжает расширяться уже адиабатно, при этом его температура понижается до температуры холодильника Т2. После этого газ приводят в контакт с холодильником, при изотермическом сжатии он отдаёт холодильнику количество теплоты Q2, сжимаясь до объёма V4 < V1. Затем сосуд снова теплоизолируют, газ сжимается адиабатно до объёма V1 и возвращается в первоначальное состояние. Для КПД этой машины было получено следующее выражение:

Как следует из формулы (13.17), КПД машины Карно прямо пропорционален разности абсолютных температур нагревателя и холодильника.

Главное значение этой формулы состоит в том, что в ней указан путь увеличения КПД, для этого надо повышать температуру нагревателя или понижать температуру холодильника.

Любая реальная тепловая машина, работающая с нагревателем, имеющим температуру Т1, и холодильником с температурой Т2, не может иметь КПД, превышающий КПД идеальной тепловой машины: Процессы, из которых состоит цикл реальной тепловой машины, не являются обратимыми.

Формула (13.17) даёт теоретический предел для максимального значения КПД тепловых двигателей. Она показывает, что тепловой двигатель тем эффективнее, чем больше разность температур нагревателя и холодильника.

Лишь при температуре холодильника, равной абсолютному нулю, η = 1. Кроме этого доказано, что КПД, рассчитанный по формуле (13.17), не зависит от рабочего вещества.

Но температура холодильника, роль которого обычно играет атмосфера, практически не может быть ниже температуры окружающего воздуха. Повышать температуру нагревателя можно. Однако любой материал (твёрдое тело) обладает ограниченной теплостойкостью, или жаропрочностью. При нагревании он постепенно утрачивает свои упругие свойства, а при достаточно высокой температуре плавится.

Сейчас основные усилия инженеров направлены на повышение КПД двигателей за счёт уменьшения трения их частей, потерь топлива вследствие его неполного сгорания и т. д.

Для паровой турбины начальные и конечные температуры пара примерно таковы: Т1 — 800 К и Т2 — 300 К. При этих температурах максимальное значение коэффициента полезного действия равно 62 % (отметим, что обычно КПД измеряют в процентах). Действительное же значение КПД из-за различного рода энергетических потерь приблизительно равно 40 %. Максимальный КПД — около 44% — имеют двигатели Дизеля.

Охрана окружающей среды.

Трудно представить современный мир без тепловых двигателей. Именно они обеспечивают нам комфортную жизнь. Тепловые двигатели приводят в движение транспорт. Около 80 % электроэнергии, несмотря на наличие атомных станций, вырабатывается с помощью тепловых двигателей.

Однако при работе тепловых двигателей происходит неизбежное загрязнение окружающей среды. В этом заключается противоречие: с одной стороны, человечеству с каждым годом необходимо всё больше энергии, основная часть которой получается за счёт сгорания топлива, с другой стороны, процессы сгорания неизбежно сопровождаются загрязнением окружающей среды.

При сгорании топлива происходит уменьшение содержания кислорода в атмосфере. Кроме этого, сами продукты сгорания образуют химические соединения, вредные для живых организмов. Загрязнение происходит не только на земле, но и в воздухе, так как любой полёт самолёта сопровождается выбросами вредных примесей в атмосферу.

Одним из следствий работы двигателей является образование углекислого газа, который поглощает инфракрасное излучение поверхности Земли, что приводит к повышению температуры атмосферы. Это так называемый парниковый эффект. Измерения показывают, что температура атмосферы за год повышается на 0,05 °С. Такое непрерывное повышение температуры может вызвать таяние льдов, что, в свою очередь, приведёт к изменению уровня воды в океанах, т. е. к затоплению материков.

Отметим ещё один отрицательный момент при использовании тепловых двигателей. Так, иногда для охлаждения двигателей используется вода из рек и озёр. Нагретая вода затем возвращается обратно. Рост температуры в водоёмах нарушает природное равновесие, это явление называют тепловым загрязнением.

Для охраны окружающей среды широко используются различные очистительные фильтры, препятствующие выбросу в атмосферу вредных веществ, совершенствуются конструкции двигателей. Идёт непрерывное усовершенствование топлива, дающего при сгорании меньше вредных веществ, а также технологии его сжигания. Активно разрабатываются альтернативные источники энергии, использующие ветер, солнечное излучение, энергию ядра. Уже выпускаются электромобили и автомобили, работающие на солнечной энергии.

Источник: «Физика – 10 класс», 2014, учебник Мякишев, Буховцев, Сотский

Основы термодинамики. Тепловые явления – Физика, учебник для 10 класса – Класс!ная физика

Насыщенный пар —
Давление насыщенного пара —
Влажность воздуха —
Примеры решения задач по теме «Насыщенный пар. Влажность воздуха» —
Кристаллические тела —
Аморфные тела —
Внутренняя энергия —
Работа в термодинамике —
Примеры решения задач по теме «Внутренняя энергия. Работа» —
Количество теплоты. Уравнение теплового баланса —
Примеры решения задач по теме: «Количество теплоты. Уравнение теплового баланса» —
Первый закон термодинамики —
Применение первого закона термодинамики к различным процессам —
Примеры решения задач по теме: «Первый закон термодинамики» —
Второй закон термодинамики —
Статистический характер второго закона термодинамики —
Принцип действия тепловых двигателей. Коэффициент полезного действия (КПД) тепловых двигателей —
Примеры решения задач по теме: «КПД тепловых двигателей»

Источник