Чему равна полезная работа если совершенная работа
Определение 1
КПД (коэффициент полезного действия) – величина, характеризующая
соотношение используемой энергии к затрачиваемой, т.е. энергетическую эффективность системы.
КПД измеряется в процентах или указывается как десятичная дробь от 0 до 1. КПД 50% (или, что тоже самое– 0,5) означает, что только половина энергии используется для выполнения работы. Остальная рассеивается в окружающем пространстве, как правило, в форме тепла.
Замечание 1
Коэффициент полезного действия паровозов, применявшихся для железнодорожных перевозок в XIX – первой половине XX вв., составлял менее 10%, т.е. 90 и более процентов тепла от сжигаемого в топках угля улетучивалось в атмосферу, не выполняя полезной работы по вращению колес, приводящему к движению состав. Для сравнения: КПД пришедших на смену паровозам тепловозов (в них используются не паровые, а дизельные двигатели) достигает 40%.
КПД в формулах обозначают греческой буквой $eta$ (эта).
$eta = frac{A_п}{A_з}$
, где $A_п$ – полезная работа, $A_з$ – затраченная.
Готовые работы на аналогичную тему
Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Узнать стоимость
Полезная работа и потери энергии
“Полезность” выполняемой работы – величина субъективная, связанная с человеческим восприятием, поэтому о КПД говорят чаще всего применительно к искусственно созданным системам. Несмотря на то, что технологии совершенствуются, избежать потерь в рукотворных системах инженерам не удастся:
- в механических устройствах часть затрачиваемой энергии всегда тратится на преодоление сил трения между соприкасающимися деталями (эти силы уменьшают за счет более тщательной обработки и смазки);
- в электрических системах часть энергии рассеивается в виде тепла при преодолении сопротивления проводников (явление сверхпроводимости еще не применимо к практике и требует низких температур);
- в нагревательных приборах утечки происходят в силу дефектов теплоизоляции и т.п.
Таким образом,
$A_з$ > $A_п$
, где $A_з$ – работа затраченная, $A_п$ – работа полезная.
Потери энергии можно сводить к минимуму, но полностью исключить их невозможно. Какое бы совершенное устройство мы не придумали, КПД никогда не достигнет единицы в силу второго закона термодинамики, действие которого исключает создание механизмов с КПД равным или большим 100%.
КПД различных физических процессов
Методики подсчета КПД разнятся в зависимости от физической природы явлений, задействованных в преобразующих энергию системах.
При практических расчетах, связанных с движением, знаменатель формулы КПД удобнее представить не как работу (произведение силы на расстояние), а как затраченную энергию, выделившуюся, например, при сжигании топлива:
$eta = frac{A_п}{Q}$
, где $A_п$ — выполненная системой полезная работа, $Q$ — затраченная системой энергия.
Например, зная сколько бензина истрачено двигателем автомобиля (количество выделившегося в результате тепла можно легко подсчитать), а также массу, скорость и пройденное расстояние, легко найти КПД.
Если речь идет не об автомобиле с двигателем внутреннего сгорания, а об электромобиле, то затраты энергии в знаменателе можно подсчитать как произведение средних тока и напряжения за время движения рассматриваемого транспортного средства.
Поскольку мощность представляет собой работу, выполняемую в единицу времени, КПД иногда бывает удобно посчитать как соотношение входной и выходной мощностей системы:
$eta = frac{P_{out}}{P_{in}}$
, где $P_{in}$ – мощность на входе системы, $P_{out}$ – на выходе.
Такой подход удобен, например, при расчете КПД солнечных батарей. В знаменателе в этом случае будет мощность светового излучения, падающего на их поверхность, в числителе – мощность генерируемого тока.
Пример 1
Лебедка, потребляющая мощностью 500 Вт, за время 10 с подняла груз массой 70 кг на высоту 5м. Найти КПД лебедки.
Лебедка преодолела силу тяжести, совершив работу
$A_л = m cdot g cdot h$
, где $m$ – масса, $g$ – ускорение свободного падения, $h$ высота.
Подставив значения, получаем:
$A = 70 cdot 9,8 cdot 5 = 3430 Дж$
Затраченную энергию найдем через мощность и время:
$Q = P cdot t$
, где $Q$ – энергия, $P$ – мощность, $t$ – время.
Подставив значения, получаем:
$Q = 500 Вт cdot 10 с = 5000 Дж$
КПД находим как соотношение
$eta = frac{A}{Q} = frac{3430}{5000}cdot 100$% = $68,6$%
Ответ: КПД лебедки равен 68,6%.
1. Механическая работа ( A ) — физическая величина, равная произведению вектора силы, действующей на тело, и вектора его перемещения: ( A=vec{F}vec{S} ). Работа — скалярная величина, характеризуется числовым значением и единицей.
За единицу работы принимают 1 джоуль (1 Дж). Это такая работа, которую совершает сила 1 Н на пути 1 м.
[ [,A,]=[,F,][,S,]; [,A,]=1Нcdot1м=1Дж ]
2. Если сила, действующая на тело, составляет некоторый угол ( alpha ) с перемещением, то проекция силы ( F ) на ось X равна ( F_x ) (рис. 42).
Поскольку ( F_x=Fcdotcosalpha ), то ( A=FScosalpha ).
Таким образом, работа постоянной силы равна произведению модулей векторов силы и перемещения и косинуса угла между этими векторами.
3. Если сила ( F ) = 0 или перемещение ( S ) = 0, то механическая работа равна нулю ( A ) = 0. Работа равна нулю, если вектор силы перпендикулярен вектору перемещения, т.е. ( cos90^circ ) = 0. Так, нулю равна работа силы, сообщающей телу центростремительное ускорение при его равномерном движении по окружности, так как эта сила перпендикулярна направлению движения тела в любой точке траектории.
4. Работа силы можетбыть как положительной, так и отрицательной. Работа положительная ( A ) > 0, если угол 90° > ( alpha ) ≥ 0°; если угол 180° > ( alpha ) ≥ 90°, то работа отрицательная ( A ) < 0.
Если угол ( alpha ) = 0°, то ( cosalpha ) = 1, ( A=FS ). Если угол ( alpha ) = 180°, то ( cosalpha ) = -1, ( A=-FS ).
5. При свободном падении с высоты ( h ) тело массой ( m ) перемещается из положения 1 в положение 2 (рис. 43). При этом сила тяжести совершает работу, равную:
[ A=F_тh=mg(h_1-h_2)=mgh ]
При движении тела вертикально вниз сила и перемещение направлены в одну сторону, и сила тяжести совершает положительную работу.
Если тело поднимается вверх, то сила тяжести направлена вниз, а перемещение вверх, то сила тяжести совершает отрицательную работу, т.е.
[ A=-F_тh=-mg(h_1-h_2)=-mgh ]
6. Работу можно представить графически. На рисунке изображён график зависимости силы тяжести от высоты тела относительно поверхности Земли (рис. 44). Графически работа силы тяжести равна площади фигуры (прямоугольника), ограниченного графиком, координатными осями и перпендикуляром, восставленным к оси абсцисс
в точке ( h ).
Графиком зависимости силы упругости от удлинения пружины является прямая, проходящая через начало координат (рис. 45). По аналогии с работой силы тяжести работа силы упругости равна площади треугольника, ограниченного графиком, координатными осями и перпендикуляром, восставленным к оси абсцисс в точке ( x ).
( A=Fx/2=kxcdot x/2 ).
[ F=kx^2/2 ]
7. Работа силы тяжести не зависит от формы траектории, по которой перемещается тело; она зависит от начального и конечного положений тела. Пусть тело сначала перемещается из точки А в точку В по траектории АВ (рис. 46). Работа силы тяжести в этом случае
[ A_{AB}=mgh ]
Пусть теперь тело движется из точки А в точку В сначала вдоль наклонной плоскости АС, затем вдоль основания наклонной плоскости ВС. Работа силы тяжести при перемещении по ВС равна нулю. Работа силы тяжести при перемещении по АС равна произведению проекции силы тяжести на наклонную плоскость ( mgsinalpha ) и длины наклонной плоскости, т.е. ( A_{AC}=mgsinalphacdot l ). Произведение ( lcdotsinalpha=h ). Тогда ( A_{AC}=mgh ). Работа силы тяжести при перемещении тела по двум различным траекториям не зависит от формы траектории, а зависит от начального и конечного положений тела.
Работа силы упругости также не зависит от формы траектории.
Предположим, что тело перемещается из точки А в точку В по траектории АСВ, а затем из точки В в точку А по траектории ВА. При движении по траектории АСВ сила тяжести совершает положительную работу, при движении по траектории В А работа силы тяжести отрицательна, равная по модулю работе при движении по траектории АСВ. Следовательно работа силы тяжести по замкнутой траектории равна нулю. То же относится и к работе силы упругости.
Силы, работа которых не зависит от формы траектории и по замкнутой траектории равна нулю, называют консервативными. К консервативным силам относятся сила тяжести и сила упругости.
8. Силы, работа которых зависит от формы пути, называют неконсервативными. Неконсервативной является сила трения. Если тело перемещается из точки А в точку В (рис. 47) сначала по прямой, а затем по ломаной линии АСВ, то в первом случае работа силы трения ( A_{AB}=-Fl_{AB} ), а во втором ( A_{ABC}=A_{AC}+A_{CB} ), ( A_{ABC}=-Fl_{AC}-Fl_{CB} ).
Следовательно, работа ( A_{AB} ) не равна работе ( A_{ABC} ).
9. Мощностью называется физическая величина, равная отношению работы к промежутку времени, за который она совершена. Мощность характеризует быстроту совершения работы.
Мощность обозначается буквой ( N ).
[ N = A/t ]
Единица мощности: ( [N]=[A]/[t] ). ( [N] ) = 1 Дж/1 с = 1 Дж/с. Эта единица называется ватт (Вт). Один ватт — такая мощность, при которой работа 1 Дж совершается за 1 с.
10. Мощность, развиваемая двигателем, равна: ( N = A/t ), ( A=Fcdot S ), откуда ( N=FS/t ). Отношение перемещения ко времени представляет собой скорость движения: ( S/t = v ). Откуда ( N = Fv ).
Из полученной формулы видно, что при постоянной силе сопротивления скорость движения прямо пропорциональна мощности двигателя.
В различных машинах и механизмах происходит преобразование механической энергии. За счёт энергии при её преобразовании совершается работа. При этом на совершение полезной работы расходуется только часть энергии. Некоторая часть энергии тратится на совершение работы против сил трения. Таким образом, любая машина характеризуется величиной, показывающей, какая часть передаваемой ей энергии используется полезно. Эта величина называется коэффициентом полезного действия (КПД).
Коэффициентом полезного действия называют величину, равную отношению полезной работы ( (A_п) ) ко всей совершённой работе ( (A_с) ): ( eta=A_п/A_с ). Выражают КПД в процентах.
ПРИМЕРЫ ЗАДАНИЙ
Часть 1
1. Работа определяется по формуле
1) ( A=Fv )
2) ( A=N/t )
3) ( A=mv )
4) ( A=FS )
2. Груз равномерно поднимают вертикально вверх за привязанную к нему верёвку. Работа силы тяжести в этом случае
1) равна нулю
2) положительная
3) отрицательная
4) больше работы силы упругости
3. Ящик тянут за привязанную к нему верёвку, составляющую угол 60° с горизонтом, прикладывая силу 30 Н. Какова работа этой силы, если модуль перемещения равен 10 м?
1) 300 Дж
2) 150 Дж
3) 3 Дж
4) 1,5 Дж
4. Искусственный спутник Земли, масса которого равна ( m ), равномерно движется по круговой орбите радиусом ( R ). Работа, совершаемая силой тяжести за время, равное периоду обращения, равна
1) ( mgR )
2) ( pi mgR )
3) ( 2pi mgR )
4) ( 0 )
5. Автомобиль массой 1,2 т проехал 800 м по горизонтальной дороге. Какая работа была совершена при этом силой трения, если коэффициент трения 0,1?
1) -960 кДж
2) -96 кДж
3) 960 кДж
4) 96 кДж
6. Пружину жёсткостью 200 Н/м растянули на 5 см. Какую работу совершит сила упругости при возвращении пружины в состояние равновесия?
1) 0,25 Дж
2) 5 Дж
3) 250 Дж
4) 500 Дж
7. Шарики одинаковой массы скатываются с горки по трём разным желобам, как показано на рисунке. В каком случае работа силы тяжести будет наибольшей?
1) 1
2) 2
3) 3
4) работа во всех случаях одинакова
8. Работа по замкнутой траектории равна нулю
А. Силы трения
Б. Силы упругости
Верным является ответ
1) и А, и Б
2) только А
3) только Б
4) ни А, ни Б
9. Единицей мощности в СИ является
1) Дж
2) Вт
3) Дж·с
4) Н·м
10. Чему равна полезная работа, если совершённая работа составляет 1000 Дж, а КПД двигателя 40 %?
1) 40000 Дж
2) 1000 Дж
3) 400 Дж
4) 25 Дж
11. Установите соответствие между работой силы (в левом столбце таблицы) и знаком работы (в правом столбце таблицы). В ответе запишите выбранные цифры под соответствующими буквами.
РАБОТА СИЛЫ
A. Работа силы упругости при растяжении пружины
Б. Работа силы трения
B. Работа силы тяжести при падении тела
ЗНАК РАБОТЫ
1) положительная
2) отрицательная
3) равна нулю
12. Из приведённых ниже утверждений выберите два правильных и запишите их номера в таблицу.
1) Работа силы тяжести не зависит от формы траектории.
2) Работа совершается при любом перемещении тела.
3) Работа силы трения скольжения всегда отрицательна.
4) Работа силы упругости по замкнутому контуру не равна нулю.
5) Работа силы трения не зависит от формы траектории.
Часть 2
13. Лебёдка равномерно поднимает груз массой 300 кг на высоту 3 м за 10 с. Какова мощность лебёдки?
Ответы
Механическая работа. Мощность
4 (80%) 1 vote
««« [ ] »»» | ||
§ 05-б. Коэффициент полезного действия | ||
Допустим, мы отдыхаем на даче, и нам нужно принести из колодца воды. Мы опускаем в него ведро, зачерпываем воду и начинаем поднимать. Не забыли, какова наша цель? Правильно: набрать воды. Но взгляните: мы поднимаем не только воду, но и само ведро, а также тяжёлую цепь, на которой оно висит. Это символизирует двухцветная стрелка: вес поднимаемого нами груза складывается из веса воды и веса ведра и цепи.
Рассматривая ситуацию качественно, мы скажем: наряду с полезной работой по подъёму воды мы совершаем и другую работу – подъём ведра и цепи. Разумеется, без цепи и ведра мы не смогли бы набрать воды, однако, с точки зрения конечной цели, их вес «вредит» нам. Если бы этот вес был бы меньше, то и полная совершённая работа тоже была бы меньше (при той же полезной). Теперь перейдём к количественному изучению этих работ и введём физическую величину, называемую коэффициентом полезного действия. Задача. Яблоки, отобранные для переработки, грузчик высыпает из корзин в грузовик. Масса пустой корзины 2 кг, а яблок в ней – 18 кг. Чему равна доля полезной работы грузчика от его полной работы? Решение. Полной работой является перемещение яблок в корзинах. Эта работа складывается из подъёма яблок и подъёма корзин. Важно: поднятие яблок – полезная работа, а поднятие корзин – «бесполезная», потому что цель работы грузчика – переместить только яблоки.
| ||
Введём обозначения: Fя – сила, с которой руки поднимают вверх только яблоки, а Fк – сила, с которой руки поднимают вверх только корзину. Каждая из этих сил равна соответствующей силе тяжести: F=mg. Пользуясь формулой A = ±( F||· l ) , «распишем» работы этих двух сил: Aполезн = +Fя · lя = mяg · h и Aбесполезн = +Fк · lк = mкg · h Полная работа складывается из двух работ, то есть равна их сумме: Aполн = Aполезн + Aбесполезн = mяg h + mкg h = ( mя + mк ) · g h В задаче нас просят вычислить долю полезной работы грузчика от его полной работы. Сделаем это, поделив полезную работу на полную:
В физике такие доли принято выражать в процентах и обозначать греческой буквой «η» (читается: «эта»). В итоге получим: η = 0,9 или η = 0,9 ·100% = 90% , что то же самое. Это число показывает, что из 100% полной работы грузчика доля его полезной работы составляет 90%. Задача решена. Физическая величина, равная отношению полезной работы к полной совершённой работе, в физике имеет собственное название – КПД – коэффициент полезного действия:
После вычисления КПД по этой формуле его принято умножать на 100%. И наоборот: для подстановки КПД в эту формулу его значение нужно перевести из процентов в десятичную дробь, поделив на 100%.
| ||||||||||||||||||||||||
Механическая работа – это одна из основных скалярных величин в физике. В рамках стандартной школьной программы она изучается в седьмом классе в разделе механики. Механическая работа – один из способов изменения внутренней энергии тела или субстанции (например, газа или жидкости) наряду с такими формами теплопередачи, как теплопроводность, конвекция и излучение, которые изучаются в разделе тепловых явлений.
Что такое работа в физике – определение и формула
Механическая работа – это количество энергии, которое нужно затратить для того, чтобы тело начало равномерно замедляющееся движение и прошло некоторую дистанцию.
В физике механической работой называется произведение силы, которая действует на некоторое тело, на расстояние, которое оно проходит под ее воздействием:
A = F * S
В более сложных случаях в формуле появляется и третья величина – косинус угла, под которым друг к другу расположены векторы движения и приложенной силы. Найти ее значение можно по формуле:
A = F * S * cosA
В чем измеряется работа
Физические единицы, в которых выражается механическая работа, – Джоули.
Существуют разные способы для ее практического измерения, которые зависят от типа произведенного движения. При этом в формулу работы подставляют значение силы в Ньютонах и расстояния в метрах. Угол между векторами измеряют в математических единицах – градусах.
Работа силы трения
При условиях, существующих на Земле, на любое движущееся тело оказывает воздействие сила трения, замедляющая его движение. Чаще всего это трение поверхности, по которой движется объект. Это очевидно из того факта, что при воздействии постоянной силы на тело его скорость окажется переменной.
Следовательно, должна быть и другая сила, противодействующая ей – и это сила трения. Если система координат выбрана по направлению движения тела, то ее числовое значение будет отрицательным.
Положительная и отрицательная работа
Числовое значение работы, которую совершает сила, может становиться отрицательным в случае если ее вектор противоположен вектору скорости.
Иными словами, сила может не только придавать телу скорость для совершения движения, но и препятствовать уже совершаемому перемещению. В таком случае она будет называться противодействующей.
Полезная или затраченная работа
У тела, совершающего одно и то же действие, есть два значения работы. Первая из них, полезная, вычисляется по обычной формуле.
Вторая, затраченная, по своему понятию не имеет общей формулы для вычисления и измеряется практически. Эта разница между совершенной в реальности работой и той, которая должна была быть совершена в теории, равна коэффициенту полезного действия – КПД. Он вычисляется так:
КПД = А полезная / А затраченная,
и выражается в процентах. КПД всегда меньше 100.
Мощность
Среднее количество работы, совершаемой за единицу времени (секунду), характеризует такую величину, как мощность. Формула для ее вычисления выглядит так:
Р = A / t
В качестве работы можно подставить люблю известную формулу для ее вычисления в зависимости от ситуации. Ответ будет выражен в Ваттах.
Однако при равномерном движении можно использовать и другую формулу:
Р = F * v
Подставив вместо обычной скорости мгновенную, можно получить значение мгновенной мощности.
Примеры решения задач
Рассмотрим несколько простых задач на нахождение механической работы.
Задача 1
Какую работу совершает подъемный механизм, поднимающий десятикилограммовый блок на высоту 50 метров.
Решение:
Для того, чтобы поднять тело, необходимо преодолеть действующую на него силу тяжести. То есть F, с которой поднимают блок, равна той, с которой он притягивается к земле. Так как последняя равна m * g, то для нахождения конечного результата понадобится только одна измененная версия стандартной формулы, упомянутой выше: A = S * m * g.
При помощи простой математики найдем числовой ответ:
A = 50 м * 10 кг * 10 Н/кг;
A = 5000 Дж.
Ответ: 5000 Дж.
Впрочем, не всегда речь идет о силе тяжести.
Задача 2
Какая работа совершается силой упругости, когда пружина с жесткостью 10 Н/м, сжатая на 20 см, возвращается в исходное состояние? Система замкнута, нет никаких внешних сил, воздействующих на пружину.
Решение:
Для начала нужно найти саму F упругости, которая совершает работу. Ее формула – F = x * |k|, где x – это длина, на которую сжимается или растягивается пружина, а k – коэффициент ее жесткости. Перемещение пружины равно ее деформации, и следовательно, конечная формула в этом случае будет выглядеть так: A = S * x * k = x * x * k = x^2 * k.
Далее при помощи элементарных вычислений рассчитаем ответ:
A = (0,2 м)^2 * 10 Н/м = 0,04 * 10 = 0,4 Дж.
Ответ: 0,4 Дж.
Но во всех задачах по данной теме траектория движения тела прямая.
Задача 3
Рассчитайте, какова сила, действующая на колесо, если на то, чтобы совершить полный оборот, ему требуется 10 кДж. Диаметр диска равен 40 см, а толщина шины – 10 см.
Решение:
В этом случае нам нужно найти не А, а F, но сделать это можно при помощи все той же формулы. Возьмем точку на поверхности колеса. Предположим, что при вращательном движении ее вектор будет противоположен вектору приложения силы, а значит косинусом в формуле вновь можно пренебречь. Таким образом, за один оборот колеса точка пройдет расстояние, равное длине окружности, которую можно вычислить как 2πr или πd. Диаметр окружности можно найти из предоставленных данных: он равен сумме диаметра диска и удвоенной толщины шины, то есть 40 см + 2 * 10 см = 40 см + 20 см = 60 см = 0,6 м.
Теперь, когда мы можем вычислить расстояние, у нас есть все данные для того, чтобы приступить к нахождению силы.
Формула работы для этого случая будет такой: A = F * π * d, то силу, соответственно, можно будет выразить как F = A / (π * d).
В таком случае:
F = 10 кДж / (3,14 * 0,6 м) = 10000 Дж / 1,884 м = ~ 5308 Н.
Ответ: 5308 Н.
В завершение решим самый сложный вариант задачи, включающий в себя все, о чем говорилось выше.
Задача 4
Автомобиль Фольксваген весом 2500 кг заезжает на гору. Какова должна быть его минимальная скорость, чтобы удержаться на горе, если сила тяги равна 10 кН, время работы двигателя – 10 с, КПД – 30%, а угол наклона горы – 60 градусов. Трением и прочими силами пренебречь.
Решение:
На первый взгляд задача может показаться сложной, но для ее решения используются только простые известные формулы.
Запишем условие в более наглядном виде.
Дано:
m = 2500 кг;
F = 10000 H;
t = 10 с;
КПД = 30%;
угол A = 1500 (60+90, т. к. сила тяжести приложена под углом 90 к горизонтали);
V – ?
Выведение формулы:
Шаг 1. По условию A1 (силы тяжести) = А2 (тяги).
A1 = mg;
A2 = P * t / КПД.
То есть mg = P * t / КПД.
Шаг 2. P = F * V * cosA.
Шаг 3. Общая формула: mg = F * V * cosA * t / КПД.
V = (m * g * КПД) / (F * t * cosA).
Числовое решение:
V = (2500 кг * 10 Н/кг * 30%) / (10000 H * 10 с * cos150);
V = (2500 кг * 10 Н/кг * 0,3) / (10000 H * 10 с * cos60);
V = 7500 / 50000;
V = 0,15 м/с.
Ответ: 0,15 м/с.