Чему равен коэффициент полезного действия теплового двигателя

Чему равен коэффициент полезного действия теплового двигателя thumbnail

Что такое КПД 

Коэффициент полезного действия (КПД) — это характеристика эффективности механизма преобразующего энергию. КПД обычно обозначается символом η, и представляет собой отношение полезной работы к полной работе.

Полная работа — это вся работа совершенная приложенной силой.

Полезная работа — это та работа, которая требуется от данного механизма.

Коэффициент полезного действия теплового двигателя подразумевает отношение полезной работы, совершенной данным двигателем, к количеству теплоты, полученному от нагревателя.

В науку и технику определение КПД двигателя ввёл в 1824 году французский инженер Сади Карно. 

Понятие максимального значения

В силу закона сохранения энергии часть теплоты при передаче неизбежно теряется. Также часть энергии всегда отдается холодильнику. Вывод: невозможно получить полезной работы больше или столько же, сколько затрачено энергии.

Значение КПД любого механизма всегда меньше единицы.

Как устроен тепловой двигатель

Любой тепловой двигатель состоит из трех основных частей:

  • рабочего тела;
  • нагревателя;
  • холодильника.

В основе работы двигателя лежит циклический процесс.

Циклический процесс

Нагреватель с помощью, например, сгорания топливной смеси выделяет большое количество теплоты и передает ее рабочему телу.

Рабочее тело, например пар, газ или жидкость, при нагревании расширяется и совершает работу, к примеру, вращает турбину или перемещает поршень.

Холодильник нужен, чтобы вернуть рабочее тело в начальное состояние. Он поглощает часть энергии рабочего тела. Таким образом обеспечивается цикличность, и тепловой двигатель работает непрерывно.

Идеальный тепловой двигатель Карно

Модель двигателя Карно разработал французский физик С. Карно

Рабочая часть двигателя Карно — поршень в заполненном газом цилиндре. Двигатель Карно — идеальная машина, она возможна только в теории. Поэтому в ней силы трения между поршнем и цилиндром и тепловые потери считаются равными нулю.

Механическая работа максимальна, если рабочее тело выполняет цикл, состоящий из двух изотерм и двух адиабат. При изотермическом расширении работа газа совершается за счет внутренней энергии нагревателя. При адиабатном процессе — за счет внутренней энергии расширяющегося газа. В этом цикле нет контакта тел с разной температурой, поэтому исключена теплопередача без совершения работы. Такой цикл называют циклом Карно.

Адиабатический процесс — это термодинамический процесс, происходящий без теплообмена с окружающей средой (Q=0).

Изотермический процесс — это термодинамический процесс, происходящий при постоянной температуре. Так как у идеального газа внутренняя энергия зависит только от температуры, то переданное газу количество тепла Q идет полностью на совершение работы A (Q=A).

Функционирует двигатель Карно следующим образом:

  1. Цилиндр вступает в контакт с горячим резервуаром, и газ расширяется при постоянной температуре. На этой фазе газ получает от горячего резервуара тепло.
  2. Цилиндр окружается теплоизоляцией, за счет чего количество тепла, имеющееся у газа, сохраняется. Газ продолжает расширяться, пока его температура не упадет до температуры холодного теплового резервуара.
  3. На третьей фазе теплоизоляция снимается. Газ в цилиндре, будучи в контакте с холодным резервуаром, сжимается, отдавая при этом часть тепла холодному резервуару.
  4. Когда сжатие достигает определенной точки, цилиндр снова окружается теплоизоляцией. Газ сжимается за счет поднятия поршня до тех пор, пока его температура не сравняется с температурой горячего резервуара. После этого теплоизоляция удаляется, и цикл повторяется вновь с первой фазы.

Примечание

Чем больше разница между температурами нагревателя и холодильника, тем больше КПД двигателя Карно.

Расчет коэффициента полезного действия

Формула для расчета КПД теплового двигателя:

(ɳ=frac{Q_1-Q_2}{Q_1})

Где Q1 — количество энергии, которую дает нагреватель; A — работу совершаемую рабочим телом; Q2 — количество энергии, которая отдается холодильнику.

Для расчета КПД теплового двигателя, работающего по циклу Карно, формула приобретает следующий вид:

(Elzrtln_k=frac{T_1-T_2}{T_1})

Где T1 — температура нагревателя; T2 — температура холодильника.

Примечание

Формула Карно позволяет вычислить предельный (максимально возможный) КПД теплового двигателя.

Построение графика КПД теплового двигателя

Работа, которую производит рабочее тело, в циклическом процессе численно равна площади цикла на графике зависимости давления от объема. Если цикл проходит по часовой стрелке, работа численно равна со знаком «+», если против часовой, то со знаком «-».

Для построения такого графика необходимо:

  1. Отложить объем рабочего тела (V) по оси абсцисс.
  2. Отложить давление рабочего тела (p) по оси ординат.
  3. Расположить на графике точки изотермы и адиабаты.

Для цикла Карно график будет выглядеть следующим образом:

Цикла Карно

Пример решения задачи

Задача № 1

Рассчитать КПД идеального теплового двигателя с температурой нагревания 1000º K и температурой холодильника равной 500° K.

Решение:

Применим формулу измерения КПД для идеального теплового двигателя: 

(Elzrtln_k=frac{T_1-T_2}{T_1})

T1 = 1000

T2 = 500

(Elzrtln_k=frac{1000-500}{1000})

(Elzrtln_k=0,5)

Ответ: КПД = 0,5

Источник

Начнем с определения. Коэффициент полезного действия двигателя внутреннего сгорания – характеристика, которая свидетельствует об эффективности агрегата. Это отношение полезной энергии к полной затраченной в процентном отношении. Другими словами, речь идет о результате преобразования тепловой энергии, получаемой при сгорании топливно-воздушной смеси, в механическую. Казалось бы, КПД должен быть высоким! Не зря же производители почти повсеместно внедрили непосредственный впрыск топлива, турбонагнетатели и выжимают солидную мощность из сравнительно компактных установок? Для сравнения, в недалеком прошлом атмосферные 2,0-литровые агрегаты развивали 140-150 л.с., а сейчас подобной отдачей могут похвастаться двигатели объемом 1,5 л, но с наддувом.

Значения КПД бензиновых и дизельных двигателей

Тем удивительнее то, что данный параметр для бензиновых агрегатов со всеми их высокотехнологичными ухищрениями равен… 20-25%. Львиная доля энергии, полученная при сгорании топлива, расходуется непосредственно на потери и лишь малая часть непосредственно на полезную работу двигателя внутреннего сгорания. У дизельных моторов картина не в пример лучше коэффициент полезного действия атмосферных моторов находится на уровне 40% и достигает 50% и более при наличии турбонагнетателя, который используется повсеместно и превращает ДВС более эффективную установку.

Потери бензинового двигателя

Существует целый ряд причин, почему коэффициент полезного действия ДВС находится на столь невысоком уровне. В случае с бензиновыми агрегатами примерно 25% потерь КПД приходится на топливную эффективность из-за того, что топливно-воздушная смесь сгорает не полностью. На тепловые потери расходуется около 35% – огромное количество тепла, которое выделяет двигатель и есть те самые потери энергии, поскольку для получения тепла требуется энергия.

Порядка 20% тратится на механические потери или, проще говоря, потери на трение внутренних частей двигателя, а также на привод дополнительного навесного оборудования, к которому относится генератор, кондиционер, помпа системы охлаждения и другие агрегаты. Как видите, причина весьма низкого КПД бензиновых агрегатов кроется в больших тепловых и механических потерях, возникающих в процессе работе установок данного типа.

Интересно, что снижение последних в ряде случаев привело к снижению надежности ДВС и эта тенденция особенно заметна в моторах последних поколений. Такие компоненты как поршни, шейки коленвалов и звенья цепей газораспределительного механизма стали компактнее, миниатюрнее. А более жидкие масла при сниженном давлении должны снизить потери на трение в подшипниках и энергетические затраты на смазку.

Потери дизельного двигателя

Противники моторов на “тяжелом топливе”, не жалующие их за вибрации, шумность, особенности моментной характеристики (солидный крутящий момент доступен на низких и средних оборотах, но при этом дизели “крутятся” довольно неохотно) и, самое главное, за риск столкнуться с невозможностью запуска зимой из-за замерзшей солярки, наверняка удивятся, узнав о двукратном превосходстве в коэффициенте полезного действия перед бензиновой когортой. Объяснение этому явлению кроется в другом принципе формирования топливно-воздушной смеси и том, как именно происходит ее воспламенение.

Источник

На чтение 12 мин. Обновлено 19 ноября, 2020

КПД теплового двигателя

Как устроен тепловой двигатель

С точки зрения термодинамики (раздел физики, изучающий закономерности взаимных превращений внутренней и механической энергий и передачи энергии от одного тела другому) любой тепловой двигатель состоит из нагревателя, холодильника и рабочего тела.

Рис. 1. Структурная схема работы теплового двигателя:.

Первое упоминание о прототипе тепловой машине относится к паровой турбине, которая была изобретена еще в древнем Риме (II век до н.э.). Правда, изобретение не нашло тогда широкого применения из-за отсутствия в то время многих вспомогательных деталей. Например, тогда еще не был придуман такой ключевой элемент для работы любого механизма, как подшипник.

Общая схема работы любой тепловой машины выглядит так:

    Нагреватель имеет температуру T1 достаточно высокую, чтобы передать большое количество теплоты Q1.

Формула Карно позволяет вычислить максимально возможный КПД теплового двигателя. Чем больше разница между температурами нагревателя и холодильника, тем больше КПД.

Какие реальные КПД у разных типов двигателей

Из приведенных примеров видно, что самые большие значения КПД (40-50%) имеют двигатели внутреннего сгорания (в дизельном варианте исполнения) и реактивные двигатели на жидком топливе.

Рис. 3. КПД реальных тепловых двигателей:.

Что мы узнали?

Итак, мы узнали что такое КПД двигателя. Величина КПД любого теплового двигателя всегда меньше 100 процентов. Чем больше разность температур нагревателя T1 и холодильника Т2, тем больше КПД.

Источник

Коэффициент полезного действия (КПД) — формулы и расчеты

Трактовка понятия

Электродвигатель и другие механизмы выполняют определённую работу, которая называется полезной. Устройство, функционируя, частично растрачивает энергию. Для определения эффективности работы применяется формула ɳ= А1/А2×100%, где:

  • А1 — полезная работу, которую выполняет машина либо мотор;
  • А2 — общий цикл работы;
  • η — обозначение КПД.

Показатель измеряется в процентах. Для нахождения коэффициента в математике используется следующая формула: η= А/Q, где А — энергия либо полезная работа, а Q — затраченная энергия. Чтобы выразить значение в процентах, КПД умножается на 100%. Действие не несёт содержательного смысла, так как 100% = 1. Для источника тока КПД меньше единицы.

В старших классах ученики решают задачи, в которых нужно найти КПД тепловых двигателей. Понятие трактуется следующим образом: отношение выполненной работы силового агрегата к энергии, полученной от нагревателя. Расчет производится по следующей формуле: η= (Q1-Q2)/Q1, где:

  • Q1 — теплота, полученная от нагревательного элемента;
  • Q2 — теплота, отданная холодильной установке.

Максимальное значение показателя характерно для циклической машины. Она оперирует при заданных температурах нагревательного элемента (Т1) и холодильника (Т2). Измерение осуществляется по формуле: η= (Т1-Т2)/Т1. Чтобы узнать КПД котла, который функционирует на органическом топливе, используется низшая теплота сгорания.

Плюс теплового насоса как нагревательного прибора заключается в возможности получать больше энергии, чем он может затратить на функционирование. Показатель трансформации вычисляется путём деления тепла конденсации на работу, затрачиваемую на выполнение данного процесса.

Мощность разных устройств

По статистике, во время работы прибора теряется до 25% энергии. При функционировании двигателя внутреннего сгорания топливо сгорает частично. Небольшой процент вылетает в выхлопную трубу. При запуске бензиновый мотор греет себя и составные элементы. На потерю уходит до 35% от общей мощности.

При движении механизмов происходит трение. Для его ослабления используется смазка. Но она неспособна полностью устранить явление, поэтому затрачивается до 20% энергии. Пример на автомобиле: если расход составляет 10 литров топлива на 100 км, на движение потребуется 2 л, а остаток, равный 8 л — потеря.

Если сравнивать КПД бензинового и дизельного моторов, полезная мощность первого механизма равна 25%, а второго — 40%. Агрегаты схожи между собой, но у них разные виды смесеобразования:

  1. Поршни бензинового мотора функционируют на высоких температурах, поэтому нуждаются в хорошем охлаждении. Тепло, которое могло бы перейти в механическую энергию, тратится впустую, что способствует снижению КПД.
  2. В цепи дизельного устройства топливо воспламеняется в процессе сжатия. На основе данного фактора можно сделать вывод, что давление в цилиндрах высокое, при этом мотор экологичнее и меньше первого аналога. Если проверить КПД при низком функционировании и большом объёме, результат превысит 50%.

Асинхронные механизмы

Расшифровка термина «асинхронность» — несовпадение по времени. Понятие используется во многих современных машинах, которые являются электрическими и способны преобразовывать соответствующую энергию в механическую. Плюсы устройств:

  • простое изготовление;
  • низкая цена;
  • надёжность;
  • незначительные эксплуатационные затраты.

Чтобы рассчитать КПД, используется уравнение η = P2 / P1. Для расчёта Р1 и Р2 применяются общие данные потери энергии в обмотках мотора. У большинства агрегатов показатель находится в пределах 80−90%. Для быстрого расчёта используется онлайн-ресурс либо личный калькулятор. Для проверки возможного КПД у мотора внешнего сгорания, который функционирует от разных источников тепла, используется силовой агрегат Стирлинга. Он представлен в виде тепловой машины с рабочим телом в виде жидкости либо газа. Вещество движется по замкнутому объёму.

Принцип его функционирования основан на постепенном нагреве и охлаждении объекта за счёт извлечения энергии из давления. Подобный механизм применяется на косметическом аппарате и современной подводной лодке. Его работоспособность наблюдается при любой температуре. Он не нуждается в дополнительной системе для запуска. Его КПД возможно расширить до 70%, в отличие от стандартного мотора.

Значения показателя

В 1824 году инженер Карно дал определение КПД идеального двигателя, когда коэффициент равен 100%. Для трактовки понятия была создана специальная машина со следующей формулой: η=(T1 — Т2)/ T1. Для расчёта максимального показателя применяется уравнение КПД макс = (T1-T2)/T1x100%. В двух примерах T1 указывает на температуру нагревателя, а T2 — температуру холодильника.

На практике для достижения 100% коэффициента потребуется приравнять температуру охладителя к нулю. Подобное явление невозможно, так как T1 выше температуры воздуха. Процедура повышения КПД источника тока либо силового агрегата считается важной технической задачей. Теоретически проблема решается путём снижения трения элементов двигателя и уменьшения теплопотери. В дизельном моторе подобное достигается турбонаддувом. В таком случае КПД возрастает до 50%.

Мощность стандартного двигателя увеличивается следующими способами:

  • подключение к системе многоцилиндрового агрегата;
  • применение специального топлива;
  • замена некоторых деталей;
  • перенос места сжигания бензина.

КПД зависит от типа и конструкции мотора. Современные учёные утверждают, что будущее за электродвигателями. На практике работа, которую совершает любое устройство, превышает полезную, так как определённая её часть выполняется против трения. Если используется подвижный блок, совершается дополнительная работа: поднимается блок с верёвкой, преодолеваются силы трения в блоке.

Решение примеров

Задача 1. Поезд на скорости 54 км/ч развивает мощность 720 кВт. Нужно вычислить силу тяги силовых агрегатов. Решение: чтобы найти мощность, используется формула N=F x v. Если перевести скорость в единицу СИ, получится 15 м/с. Подставив данные в уравнение, определяется, что F равно 48 kН.

Задача 2. Масса транспортного средства соответствует 2200 кг. Машина, поднимаясь в гору под уклоном в 0,018, проходит расстояние 100 м. Скорость развивается до 32,4 км/ч, а коэффициент трения соответствует 0,04. Нужно определить среднюю мощность авто при движении. Решение: вычисляется средняя скорость — v/2. Чтобы определить силу тяги мотора, выполняется рисунок, на котором отображаются силы, воздействующие на машину:

  • тяжесть — mg;
  • реакция опоры — N;
  • трение — Ftr;
  • тяга — F.

Первая величина вычисляется по второму закону Ньютона: mg+N+Ftr+F=ma. Для ускорения используется уравнение a=v2/2S. Если подставить последние значение и воспользоваться cos, получится средняя мощность. Так как ускорение считается постоянной величиной и равно 9,8 м/с2, поэтому v= 9 м/с. Подставив данные в первую формулу, получится: N= 9,5 kBt.

При решении сложных задач по физике рекомендуется проверить соответствие предоставленных в условиях единиц измерения с международными стандартами. Если они отличаются, необходимости перевести данные с учётом СИ.

Источник

Чем измеряется кпд теплового двигателя

«Физика — 10 класс»

Что такое термодинамическая система и какими параметрами характеризуется её состояние.
Сформулируйте первый и второй законы термодинамики.

Именно создание теории тепловых двигателей и привело к формулированию второго закона термодинамики.

Запасы внутренней энергии в земной коре и океанах можно считать практически неограниченными. Но для решения практических задач располагать запасами энергии ещё недостаточно. Необходимо так же уметь за счёт энергии приводить в движение станки на фабриках и заводах, средства транспорта, тракторы и другие машины, вращать роторы генераторов электрического тока и т. д. Человечеству нужны двигатели — устройства, способные совершать работу. Большая часть двигателей на Земле — это тепловые двигатели.

Тепловые двигатели — это устройства, превращающие внутреннюю энергию топлива в механическую работу.

Принцип действия тепловых двигателей.

Для того чтобы двигатель совершал работу, необходима разность давлений по обе стороны поршня двигателя или лопастей турбины. Во всех тепловых двигателях эта разность давлений достигается за счёт повышения температуры рабочего тела (газа) на сотни или тысячи градусов по сравнению с температурой окружающей среды. Такое повышение температуры происходит при сгорании топлива.

Одна из основных частей двигателя — сосуд, наполненный газом, с подвижным поршнем. Рабочим телом у всех тепловых двигателей является газ, который совершает работу при расширении. Обозначим начальную температуру рабочего тела (газа) через T1. Эту температуру в паровых турбинах или машинах приобретает пар в паровом котле. В двигателях внутреннего сгорания и газовых турбинах повышение температуры происходит при сгорании топлива внутри самого двигателя. Температуру Т1 называют температурой нагревателя.

Роль холодильника.

По мере совершения работы газ теряет энергию и неизбежно охлаждается до некоторой температуры Т2, которая обычно несколько выше температуры окружающей среды. Её называют температурой холодильника. Холодильником является атмосфера или специальные устройства для охлаждения и конденсации отработанного пара — конденсаторы. В последнем случае температура холодильника может быть немного ниже температуры окружающего воздуха.

Таким образом, в двигателе рабочее тело при расширении не может отдать всю свою внутреннюю энергию на совершение работы. Часть тепла неизбежно передаётся холодильнику (атмосфере) вместе с отработанным паром или выхлопными газами двигателей внутреннего сгорания и газовых турбин.

Эта часть внутренней энергии топлива теряется. Тепловой двигатель совершает работу за счёт внутренней энергии рабочего тела. Причём в этом процессе происходит передача теплоты от более горячих тел (нагревателя) к более холодным (холодильнику). Принципиальная схема теплового двигателя изображена на рисунке 13.13.

Рабочее тело двигателя получает от нагревателя при сгорании топлива количество теплоты Q1, совершает работу А’ и передаёт холодильнику количество теплоты Q2

Так как у всех двигателей некоторое количество теплоты передаётся холодильнику, то η

Карно придумал идеальную тепловую машину с идеальным газом в качестве рабочего тела. Идеальная тепловая машина Карно работает по циклу, состоящему из двух изотерм и двух адиабат, причем эти процессы считаются обратимыми (рис. 13.14). Сначала сосуд с газом приводят в контакт с нагревателем, газ изотермически расширяется, совершая положительную работу, при температуре Т1, при этом он получает количество теплоты Q1.

Затем сосуд теплоизолируют, газ продолжает расширяться уже адиабатно, при этом его температура понижается до температуры холодильника Т2. После этого газ приводят в контакт с холодильником, при изотермическом сжатии он отдаёт холодильнику количество теплоты Q2, сжимаясь до объёма V4

Как следует из формулы (13.17), КПД машины Карно прямо пропорционален разности абсолютных температур нагревателя и холодильника.

Главное значение этой формулы состоит в том, что в ней указан путь увеличения КПД, для этого надо повышать температуру нагревателя или понижать температуру холодильника.

Любая реальная тепловая машина, работающая с нагревателем, имеющим температуру Т1, и холодильником с температурой Т2, не может иметь КПД, превышающий КПД идеальной тепловой машины:

Процессы, из которых состоит цикл реальной тепловой машины, не являются обратимыми.

Формула (13.17) даёт теоретический предел для максимального значения КПД тепловых двигателей. Она показывает, что тепловой двигатель тем эффективнее, чем больше разность температур нагревателя и холодильника.

Лишь при температуре холодильника, равной абсолютному нулю, η = 1. Кроме этого доказано, что КПД, рассчитанный по формуле (13.17), не зависит от рабочего вещества.

Но температура холодильника, роль которого обычно играет атмосфера, практически не может быть ниже температуры окружающего воздуха. Повышать температуру нагревателя можно. Однако любой материал (твёрдое тело) обладает ограниченной теплостойкостью, или жаропрочностью. При нагревании он постепенно утрачивает свои упругие свойства, а при достаточно высокой температуре плавится.

Сейчас основные усилия инженеров направлены на повышение КПД двигателей за счёт уменьшения трения их частей, потерь топлива вследствие его неполного сгорания и т. д.

Для паровой турбины начальные и конечные температуры пара примерно таковы: Т1 — 800 К и Т2 — 300 К. При этих температурах максимальное значение коэффициента полезного действия равно 62 % (отметим, что обычно КПД измеряют в процентах). Действительное же значение КПД из-за различного рода энергетических потерь приблизительно равно 40 %. Максимальный КПД — около 44% — имеют двигатели Дизеля.

Охрана окружающей среды.

Трудно представить современный мир без тепловых двигателей. Именно они обеспечивают нам комфортную жизнь. Тепловые двигатели приводят в движение транспорт. Около 80 % электроэнергии, несмотря на наличие атомных станций, вырабатывается с помощью тепловых двигателей.

Однако при работе тепловых двигателей происходит неизбежное загрязнение окружающей среды. В этом заключается противоречие: с одной стороны, человечеству с каждым годом необходимо всё больше энергии, основная часть которой получается за счёт сгорания топлива, с другой стороны, процессы сгорания неизбежно сопровождаются загрязнением окружающей среды.

При сгорании топлива происходит уменьшение содержания кислорода в атмосфере. Кроме этого, сами продукты сгорания образуют химические соединения, вредные для живых организмов. Загрязнение происходит не только на земле, но и в воздухе, так как любой полёт самолёта сопровождается выбросами вредных примесей в атмосферу.

Одним из следствий работы двигателей является образование углекислого газа, который поглощает инфракрасное излучение поверхности Земли, что приводит к повышению температуры атмосферы. Это так называемый парниковый эффект. Измерения показывают, что температура атмосферы за год повышается на 0,05 °С. Такое непрерывное повышение температуры может вызвать таяние льдов, что, в свою очередь, приведёт к изменению уровня воды в океанах, т. е. к затоплению материков.

Отметим ещё один отрицательный момент при использовании тепловых двигателей. Так, иногда для охлаждения двигателей используется вода из рек и озёр. Нагретая вода затем возвращается обратно. Рост температуры в водоёмах нарушает природное равновесие, это явление называют тепловым загрязнением.

Для охраны окружающей среды широко используются различные очистительные фильтры, препятствующие выбросу в атмосферу вредных веществ, совершенствуются конструкции двигателей. Идёт непрерывное усовершенствование топлива, дающего при сгорании меньше вредных веществ, а также технологии его сжигания. Активно разрабатываются альтернативные источники энергии, использующие ветер, солнечное излучение, энергию ядра. Уже выпускаются электромобили и автомобили, работающие на солнечной энергии.

Источник: «Физика — 10 класс», 2014, учебник Мякишев, Буховцев, Сотский

Основы термодинамики. Тепловые явления — Физика, учебник для 10 класса — Класс!ная физика

Источник

Источник